Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales

Autores
Pinasco, Juan Pablo
Año de publicación
2005
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Durán, Ricardo Guillermo
Descripción
[fórmulas aproximadas, revisar las mismas en el original]. En este trabajo obtendremos cotas y estimaciones asintóticas para los autovalores {λk}k del p-Laplaciano unidimensional con una función peso r(t): −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), con diferentes condiciones de borde. Obtendremos una generalización de la teoría de Sturm Liouville basada en desigualdades integrales, que nos permitirá presentar una demostración de la desigualdad de Lyapunov. Con esta obtendremos cotas inferiores óptimas para autovalores. Daremos otras demostraciones diferentes de esta desigualdad y distintas aplicaciones. Para el problema con condición de borde Neumann y pesos indefinidos demostraremos que los autovalores variacionales son todos. También obtendremos curvas que contienen el espectro de Fučik, y daremos otra demostración de que para esta condición de borde las líneas triviales del espectro son aisladas, y que la segunda curva presenta una separación de los ejes en infinito. Combinando métodos variacionales con la teoría de Sturm Liouville no lineal, obtendremos el desarrollo asintótico de la función N(λ) definida como N(λ) = #{k : λk ≤ λ}. Calcularemos el primer término en el desarrollo de N(λ) y daremos una estimación del segundo término. Aquí, Ω puede ser una unión infinita de intervalos disjuntos, en tal caso, ∂Ω tendrá una dimensión interior de Minkowski d ∈ [0, 1), y el desarrollo será: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), donde πp = 2(p − 1)^1/p π/p/sin(π/p) . De este desarrollo obtendremos la siguiente fórmula asintótica para el k-ésimo autovalor, λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. Extenderemos los resultados obtenidos para la función N(λ) para pesos que cambian de signo y a distintos problemas singulares, tales como el comportamiento asintótico de los autovalores radiales en R N de la ecuación −∆pu = −div(|∇u|^p− 2 ∇u) = (λ − q(|x|)|u|^p−2 u, y del problema radial en una bola.
[fórmulas aproximadas, revisar las mismas en el original]. This work is concerned with eigenvalue bounds and the asymptotic behaviour of the eigenvalues {λk}k of the weighted p-laplacian equation, −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), with different boundary conditions (Dirichlet, Neumann, mixed), where Ω ⊂ R is an open set, 1 < p < +∞, λ is the eigenvalue parameter, and r(t) is a real function. We develop a non linear Sturm-Liouville theory with integral inequalities on the weights instead of the classical pointwise conditions. We obtain from it a Lyapunov inequality, which in turns gives optimal lower bounds for the eigenvalues {λk}k. For the Neumann eigenvalue problem with indefinite weights, we prove that the variational eigenvalues exhaust the spectrum. Also, we consider the Fučik spectrum with the Neumann boundary condition, and we will show different proofs of the isolation of the trivial lines and the existence of a gap at infinity. By combining variational methods and the non linear Sturm Liouville theory, we obtain the asymptotic expansion of N(λ), the spectral counting function defined as N(λ) = #{k : λk ≤ λ}. We compute the first term and we give an estimation of the error term. Here, Ω = ∪j∈NIj , and ∂Ω has an associated fractal dimension d ∈ [0, 1). We show that the growth of the error term depends on the interior Minkowski dimension d of ∂Ω: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), where πp = 2(p − 1)^1/p ∫1 0 ds/(1 − s^p)^1/p . As a corollary, we obtain the asymptotic behavior of eigenvalues: λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. We extend the previous results to general weights r(t) which are allowed to change signs, and without continuity hypotheses. Also, we consider singular eigenvalue problems related to the asymptotic distribution of radial eigenvalues.
Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
AUTOVALORES
COTAS
ESTIMACIONES ASINTOTICAS
P-LAPLACIANO
STURM LIOUVILLE
DESIGUALDAD DE LYAPUNOV
EIGENVALUE BOUNDS
ASYMPTOTIC BEHAVIOR OF EIGENVALUES
P-LAPLACIAN
STURM LIOUVILLE THEORY
LYAPUNOV INEQUALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n3847_Pinasco

id BDUBAFCEN_f248798b6a1ba8036323c68f193ebb59
oai_identifier_str tesis:tesis_n3847_Pinasco
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Cotas y estimaciones asintóticas para autovalores de problemas elípticos no linealesBounds and asymptotic estimations for the eigenvalues of non linear elliptic problemsPinasco, Juan PabloAUTOVALORESCOTASESTIMACIONES ASINTOTICASP-LAPLACIANOSTURM LIOUVILLEDESIGUALDAD DE LYAPUNOVEIGENVALUE BOUNDSASYMPTOTIC BEHAVIOR OF EIGENVALUESP-LAPLACIANSTURM LIOUVILLE THEORYLYAPUNOV INEQUALITY[fórmulas aproximadas, revisar las mismas en el original]. En este trabajo obtendremos cotas y estimaciones asintóticas para los autovalores {λk}k del p-Laplaciano unidimensional con una función peso r(t): −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), con diferentes condiciones de borde. Obtendremos una generalización de la teoría de Sturm Liouville basada en desigualdades integrales, que nos permitirá presentar una demostración de la desigualdad de Lyapunov. Con esta obtendremos cotas inferiores óptimas para autovalores. Daremos otras demostraciones diferentes de esta desigualdad y distintas aplicaciones. Para el problema con condición de borde Neumann y pesos indefinidos demostraremos que los autovalores variacionales son todos. También obtendremos curvas que contienen el espectro de Fučik, y daremos otra demostración de que para esta condición de borde las líneas triviales del espectro son aisladas, y que la segunda curva presenta una separación de los ejes en infinito. Combinando métodos variacionales con la teoría de Sturm Liouville no lineal, obtendremos el desarrollo asintótico de la función N(λ) definida como N(λ) = #{k : λk ≤ λ}. Calcularemos el primer término en el desarrollo de N(λ) y daremos una estimación del segundo término. Aquí, Ω puede ser una unión infinita de intervalos disjuntos, en tal caso, ∂Ω tendrá una dimensión interior de Minkowski d ∈ [0, 1), y el desarrollo será: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), donde πp = 2(p − 1)^1/p π/p/sin(π/p) . De este desarrollo obtendremos la siguiente fórmula asintótica para el k-ésimo autovalor, λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. Extenderemos los resultados obtenidos para la función N(λ) para pesos que cambian de signo y a distintos problemas singulares, tales como el comportamiento asintótico de los autovalores radiales en R N de la ecuación −∆pu = −div(|∇u|^p− 2 ∇u) = (λ − q(|x|)|u|^p−2 u, y del problema radial en una bola.[fórmulas aproximadas, revisar las mismas en el original]. This work is concerned with eigenvalue bounds and the asymptotic behaviour of the eigenvalues {λk}k of the weighted p-laplacian equation, −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), with different boundary conditions (Dirichlet, Neumann, mixed), where Ω ⊂ R is an open set, 1 < p < +∞, λ is the eigenvalue parameter, and r(t) is a real function. We develop a non linear Sturm-Liouville theory with integral inequalities on the weights instead of the classical pointwise conditions. We obtain from it a Lyapunov inequality, which in turns gives optimal lower bounds for the eigenvalues {λk}k. For the Neumann eigenvalue problem with indefinite weights, we prove that the variational eigenvalues exhaust the spectrum. Also, we consider the Fučik spectrum with the Neumann boundary condition, and we will show different proofs of the isolation of the trivial lines and the existence of a gap at infinity. By combining variational methods and the non linear Sturm Liouville theory, we obtain the asymptotic expansion of N(λ), the spectral counting function defined as N(λ) = #{k : λk ≤ λ}. We compute the first term and we give an estimation of the error term. Here, Ω = ∪j∈NIj , and ∂Ω has an associated fractal dimension d ∈ [0, 1). We show that the growth of the error term depends on the interior Minkowski dimension d of ∂Ω: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), where πp = 2(p − 1)^1/p ∫1 0 ds/(1 − s^p)^1/p . As a corollary, we obtain the asymptotic behavior of eigenvalues: λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. We extend the previous results to general weights r(t) which are allowed to change signs, and without continuity hypotheses. Also, we consider singular eigenvalue problems related to the asymptotic distribution of radial eigenvalues.Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesDurán, Ricardo Guillermo2005info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/20.500.12110/tesis_n3847_Pinascospainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:46:28Ztesis:tesis_n3847_PinascoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:46:30.861Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
Bounds and asymptotic estimations for the eigenvalues of non linear elliptic problems
title Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
spellingShingle Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
Pinasco, Juan Pablo
AUTOVALORES
COTAS
ESTIMACIONES ASINTOTICAS
P-LAPLACIANO
STURM LIOUVILLE
DESIGUALDAD DE LYAPUNOV
EIGENVALUE BOUNDS
ASYMPTOTIC BEHAVIOR OF EIGENVALUES
P-LAPLACIAN
STURM LIOUVILLE THEORY
LYAPUNOV INEQUALITY
title_short Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
title_full Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
title_fullStr Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
title_full_unstemmed Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
title_sort Cotas y estimaciones asintóticas para autovalores de problemas elípticos no lineales
dc.creator.none.fl_str_mv Pinasco, Juan Pablo
author Pinasco, Juan Pablo
author_facet Pinasco, Juan Pablo
author_role author
dc.contributor.none.fl_str_mv Durán, Ricardo Guillermo
dc.subject.none.fl_str_mv AUTOVALORES
COTAS
ESTIMACIONES ASINTOTICAS
P-LAPLACIANO
STURM LIOUVILLE
DESIGUALDAD DE LYAPUNOV
EIGENVALUE BOUNDS
ASYMPTOTIC BEHAVIOR OF EIGENVALUES
P-LAPLACIAN
STURM LIOUVILLE THEORY
LYAPUNOV INEQUALITY
topic AUTOVALORES
COTAS
ESTIMACIONES ASINTOTICAS
P-LAPLACIANO
STURM LIOUVILLE
DESIGUALDAD DE LYAPUNOV
EIGENVALUE BOUNDS
ASYMPTOTIC BEHAVIOR OF EIGENVALUES
P-LAPLACIAN
STURM LIOUVILLE THEORY
LYAPUNOV INEQUALITY
dc.description.none.fl_txt_mv [fórmulas aproximadas, revisar las mismas en el original]. En este trabajo obtendremos cotas y estimaciones asintóticas para los autovalores {λk}k del p-Laplaciano unidimensional con una función peso r(t): −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), con diferentes condiciones de borde. Obtendremos una generalización de la teoría de Sturm Liouville basada en desigualdades integrales, que nos permitirá presentar una demostración de la desigualdad de Lyapunov. Con esta obtendremos cotas inferiores óptimas para autovalores. Daremos otras demostraciones diferentes de esta desigualdad y distintas aplicaciones. Para el problema con condición de borde Neumann y pesos indefinidos demostraremos que los autovalores variacionales son todos. También obtendremos curvas que contienen el espectro de Fučik, y daremos otra demostración de que para esta condición de borde las líneas triviales del espectro son aisladas, y que la segunda curva presenta una separación de los ejes en infinito. Combinando métodos variacionales con la teoría de Sturm Liouville no lineal, obtendremos el desarrollo asintótico de la función N(λ) definida como N(λ) = #{k : λk ≤ λ}. Calcularemos el primer término en el desarrollo de N(λ) y daremos una estimación del segundo término. Aquí, Ω puede ser una unión infinita de intervalos disjuntos, en tal caso, ∂Ω tendrá una dimensión interior de Minkowski d ∈ [0, 1), y el desarrollo será: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), donde πp = 2(p − 1)^1/p π/p/sin(π/p) . De este desarrollo obtendremos la siguiente fórmula asintótica para el k-ésimo autovalor, λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. Extenderemos los resultados obtenidos para la función N(λ) para pesos que cambian de signo y a distintos problemas singulares, tales como el comportamiento asintótico de los autovalores radiales en R N de la ecuación −∆pu = −div(|∇u|^p− 2 ∇u) = (λ − q(|x|)|u|^p−2 u, y del problema radial en una bola.
[fórmulas aproximadas, revisar las mismas en el original]. This work is concerned with eigenvalue bounds and the asymptotic behaviour of the eigenvalues {λk}k of the weighted p-laplacian equation, −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), with different boundary conditions (Dirichlet, Neumann, mixed), where Ω ⊂ R is an open set, 1 < p < +∞, λ is the eigenvalue parameter, and r(t) is a real function. We develop a non linear Sturm-Liouville theory with integral inequalities on the weights instead of the classical pointwise conditions. We obtain from it a Lyapunov inequality, which in turns gives optimal lower bounds for the eigenvalues {λk}k. For the Neumann eigenvalue problem with indefinite weights, we prove that the variational eigenvalues exhaust the spectrum. Also, we consider the Fučik spectrum with the Neumann boundary condition, and we will show different proofs of the isolation of the trivial lines and the existence of a gap at infinity. By combining variational methods and the non linear Sturm Liouville theory, we obtain the asymptotic expansion of N(λ), the spectral counting function defined as N(λ) = #{k : λk ≤ λ}. We compute the first term and we give an estimation of the error term. Here, Ω = ∪j∈NIj , and ∂Ω has an associated fractal dimension d ∈ [0, 1). We show that the growth of the error term depends on the interior Minkowski dimension d of ∂Ω: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), where πp = 2(p − 1)^1/p ∫1 0 ds/(1 − s^p)^1/p . As a corollary, we obtain the asymptotic behavior of eigenvalues: λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. We extend the previous results to general weights r(t) which are allowed to change signs, and without continuity hypotheses. Also, we consider singular eigenvalue problems related to the asymptotic distribution of radial eigenvalues.
Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description [fórmulas aproximadas, revisar las mismas en el original]. En este trabajo obtendremos cotas y estimaciones asintóticas para los autovalores {λk}k del p-Laplaciano unidimensional con una función peso r(t): −(|u’(t)|^p−2 u’(t))’ = λr(t)|u(t)| p−2u(t), con diferentes condiciones de borde. Obtendremos una generalización de la teoría de Sturm Liouville basada en desigualdades integrales, que nos permitirá presentar una demostración de la desigualdad de Lyapunov. Con esta obtendremos cotas inferiores óptimas para autovalores. Daremos otras demostraciones diferentes de esta desigualdad y distintas aplicaciones. Para el problema con condición de borde Neumann y pesos indefinidos demostraremos que los autovalores variacionales son todos. También obtendremos curvas que contienen el espectro de Fučik, y daremos otra demostración de que para esta condición de borde las líneas triviales del espectro son aisladas, y que la segunda curva presenta una separación de los ejes en infinito. Combinando métodos variacionales con la teoría de Sturm Liouville no lineal, obtendremos el desarrollo asintótico de la función N(λ) definida como N(λ) = #{k : λk ≤ λ}. Calcularemos el primer término en el desarrollo de N(λ) y daremos una estimación del segundo término. Aquí, Ω puede ser una unión infinita de intervalos disjuntos, en tal caso, ∂Ω tendrá una dimensión interior de Minkowski d ∈ [0, 1), y el desarrollo será: N(λ) = λ^(1/p)/ 2πp ∫Ω r^(1/p)(t) dt + O(λ^d/p), donde πp = 2(p − 1)^1/p π/p/sin(π/p) . De este desarrollo obtendremos la siguiente fórmula asintótica para el k-ésimo autovalor, λk ∼ (πpk/ ∫Ω r^(1/p)(t) dt)^p. Extenderemos los resultados obtenidos para la función N(λ) para pesos que cambian de signo y a distintos problemas singulares, tales como el comportamiento asintótico de los autovalores radiales en R N de la ecuación −∆pu = −div(|∇u|^p− 2 ∇u) = (λ − q(|x|)|u|^p−2 u, y del problema radial en una bola.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/tesis_n3847_Pinasco
url http://hdl.handle.net/20.500.12110/tesis_n3847_Pinasco
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340676800348160
score 12.623145