M-affine functions composing Sturm–Liouville families
- Autores
- Berrone, Lucio Renato; Sbergamo, Gerardo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.
Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
MEANS
M-AFFINE FUNCTION
STURM-LIOUVILLE PROPERTY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/90391
Ver los metadatos del registro completo
id |
CONICETDig_891d42a69efb3289ba8efa54249e562d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/90391 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
M-affine functions composing Sturm–Liouville familiesBerrone, Lucio RenatoSbergamo, GerardoMEANSM-AFFINE FUNCTIONSTURM-LIOUVILLE PROPERTYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaSpringer2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90391Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-9100001-90541420-8903CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-018-0588-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-018-0588-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:52Zoai:ri.conicet.gov.ar:11336/90391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:53.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
M-affine functions composing Sturm–Liouville families |
title |
M-affine functions composing Sturm–Liouville families |
spellingShingle |
M-affine functions composing Sturm–Liouville families Berrone, Lucio Renato MEANS M-AFFINE FUNCTION STURM-LIOUVILLE PROPERTY |
title_short |
M-affine functions composing Sturm–Liouville families |
title_full |
M-affine functions composing Sturm–Liouville families |
title_fullStr |
M-affine functions composing Sturm–Liouville families |
title_full_unstemmed |
M-affine functions composing Sturm–Liouville families |
title_sort |
M-affine functions composing Sturm–Liouville families |
dc.creator.none.fl_str_mv |
Berrone, Lucio Renato Sbergamo, Gerardo |
author |
Berrone, Lucio Renato |
author_facet |
Berrone, Lucio Renato Sbergamo, Gerardo |
author_role |
author |
author2 |
Sbergamo, Gerardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
MEANS M-AFFINE FUNCTION STURM-LIOUVILLE PROPERTY |
topic |
MEANS M-AFFINE FUNCTION STURM-LIOUVILLE PROPERTY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones. Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/90391 Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-910 0001-9054 1420-8903 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/90391 |
identifier_str_mv |
Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-910 0001-9054 1420-8903 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-018-0588-x info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-018-0588-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269123264905216 |
score |
13.13397 |