M-affine functions composing Sturm–Liouville families

Autores
Berrone, Lucio Renato; Sbergamo, Gerardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.
Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Materia
MEANS
M-AFFINE FUNCTION
STURM-LIOUVILLE PROPERTY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90391

id CONICETDig_891d42a69efb3289ba8efa54249e562d
oai_identifier_str oai:ri.conicet.gov.ar:11336/90391
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling M-affine functions composing Sturm–Liouville familiesBerrone, Lucio RenatoSbergamo, GerardoMEANSM-AFFINE FUNCTIONSTURM-LIOUVILLE PROPERTYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaSpringer2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90391Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-9100001-90541420-8903CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-018-0588-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-018-0588-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:52Zoai:ri.conicet.gov.ar:11336/90391instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:53.16CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv M-affine functions composing Sturm–Liouville families
title M-affine functions composing Sturm–Liouville families
spellingShingle M-affine functions composing Sturm–Liouville families
Berrone, Lucio Renato
MEANS
M-AFFINE FUNCTION
STURM-LIOUVILLE PROPERTY
title_short M-affine functions composing Sturm–Liouville families
title_full M-affine functions composing Sturm–Liouville families
title_fullStr M-affine functions composing Sturm–Liouville families
title_full_unstemmed M-affine functions composing Sturm–Liouville families
title_sort M-affine functions composing Sturm–Liouville families
dc.creator.none.fl_str_mv Berrone, Lucio Renato
Sbergamo, Gerardo
author Berrone, Lucio Renato
author_facet Berrone, Lucio Renato
Sbergamo, Gerardo
author_role author
author2 Sbergamo, Gerardo
author2_role author
dc.subject.none.fl_str_mv MEANS
M-AFFINE FUNCTION
STURM-LIOUVILLE PROPERTY
topic MEANS
M-AFFINE FUNCTION
STURM-LIOUVILLE PROPERTY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.
Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Sbergamo, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
description Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation [Equation not available: see fulltext.]When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval [a, b] ⊆ I; i.e., for every α, β∈ [a, b] , there exists an M-affine function f such that f(a) = α and f(b) = β. The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90391
Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-910
0001-9054
1420-8903
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90391
identifier_str_mv Berrone, Lucio Renato; Sbergamo, Gerardo; M-affine functions composing Sturm–Liouville families; Springer; Aequationes Mathematicae; 92; 5; 10-2018; 873-910
0001-9054
1420-8903
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-018-0588-x
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-018-0588-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269123264905216
score 13.13397