Decay estimates for nonlocal problems via energy methods

Autores
Ignat, L.I.; Rossi, J.D.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the applicability of energy methods to obtain bounds for the asymptotic decay of solutions to nonlocal diffusion problems. With these energy methods we can deal with nonlocal problems that not necessarily involve a convolution, that is, of the form ut (x, t) = ∫Rd G (x - y) (u (y, t) - u (x, t)) d y. For example, we will consider equations like,ut (x, t) = under(∫, Rd) J (x, y) (u (y, t) - u (x, t)) d y + f (u) (x, t), and a nonlocal analogous to the p-Laplacian,ut (x, t) = under(∫, Rd) J (x, y) | u (y, t) - u (x, t) |p - 2 (u (y, t) - u (x, t)) d y . The energy method developed here allows us to obtain decay rates of the form,{norm of matrix} u (ṡ, t) {norm of matrix}Lq (Rd) ≤ C t- α, for some explicit exponent α that depends on the parameters, d, q and p, according to the problem under consideration. © 2009 Elsevier Masson SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Pures Appl. 2009;92(2):163-187
Materia
Energy methods
Nonlocal diffusion
p-Laplacian
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00217824_v92_n2_p163_Ignat

id BDUBAFCEN_e35ef31f959935fa1da5c58a37413d08
oai_identifier_str paperaa:paper_00217824_v92_n2_p163_Ignat
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Decay estimates for nonlocal problems via energy methodsIgnat, L.I.Rossi, J.D.Energy methodsNonlocal diffusionp-LaplacianIn this paper we study the applicability of energy methods to obtain bounds for the asymptotic decay of solutions to nonlocal diffusion problems. With these energy methods we can deal with nonlocal problems that not necessarily involve a convolution, that is, of the form ut (x, t) = ∫Rd G (x - y) (u (y, t) - u (x, t)) d y. For example, we will consider equations like,ut (x, t) = under(∫, Rd) J (x, y) (u (y, t) - u (x, t)) d y + f (u) (x, t), and a nonlocal analogous to the p-Laplacian,ut (x, t) = under(∫, Rd) J (x, y) | u (y, t) - u (x, t) |p - 2 (u (y, t) - u (x, t)) d y . The energy method developed here allows us to obtain decay rates of the form,{norm of matrix} u (ṡ, t) {norm of matrix}Lq (Rd) ≤ C t- α, for some explicit exponent α that depends on the parameters, d, q and p, according to the problem under consideration. © 2009 Elsevier Masson SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00217824_v92_n2_p163_IgnatJ. Math. Pures Appl. 2009;92(2):163-187reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:02Zpaperaa:paper_00217824_v92_n2_p163_IgnatInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.091Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Decay estimates for nonlocal problems via energy methods
title Decay estimates for nonlocal problems via energy methods
spellingShingle Decay estimates for nonlocal problems via energy methods
Ignat, L.I.
Energy methods
Nonlocal diffusion
p-Laplacian
title_short Decay estimates for nonlocal problems via energy methods
title_full Decay estimates for nonlocal problems via energy methods
title_fullStr Decay estimates for nonlocal problems via energy methods
title_full_unstemmed Decay estimates for nonlocal problems via energy methods
title_sort Decay estimates for nonlocal problems via energy methods
dc.creator.none.fl_str_mv Ignat, L.I.
Rossi, J.D.
author Ignat, L.I.
author_facet Ignat, L.I.
Rossi, J.D.
author_role author
author2 Rossi, J.D.
author2_role author
dc.subject.none.fl_str_mv Energy methods
Nonlocal diffusion
p-Laplacian
topic Energy methods
Nonlocal diffusion
p-Laplacian
dc.description.none.fl_txt_mv In this paper we study the applicability of energy methods to obtain bounds for the asymptotic decay of solutions to nonlocal diffusion problems. With these energy methods we can deal with nonlocal problems that not necessarily involve a convolution, that is, of the form ut (x, t) = ∫Rd G (x - y) (u (y, t) - u (x, t)) d y. For example, we will consider equations like,ut (x, t) = under(∫, Rd) J (x, y) (u (y, t) - u (x, t)) d y + f (u) (x, t), and a nonlocal analogous to the p-Laplacian,ut (x, t) = under(∫, Rd) J (x, y) | u (y, t) - u (x, t) |p - 2 (u (y, t) - u (x, t)) d y . The energy method developed here allows us to obtain decay rates of the form,{norm of matrix} u (ṡ, t) {norm of matrix}Lq (Rd) ≤ C t- α, for some explicit exponent α that depends on the parameters, d, q and p, according to the problem under consideration. © 2009 Elsevier Masson SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study the applicability of energy methods to obtain bounds for the asymptotic decay of solutions to nonlocal diffusion problems. With these energy methods we can deal with nonlocal problems that not necessarily involve a convolution, that is, of the form ut (x, t) = ∫Rd G (x - y) (u (y, t) - u (x, t)) d y. For example, we will consider equations like,ut (x, t) = under(∫, Rd) J (x, y) (u (y, t) - u (x, t)) d y + f (u) (x, t), and a nonlocal analogous to the p-Laplacian,ut (x, t) = under(∫, Rd) J (x, y) | u (y, t) - u (x, t) |p - 2 (u (y, t) - u (x, t)) d y . The energy method developed here allows us to obtain decay rates of the form,{norm of matrix} u (ṡ, t) {norm of matrix}Lq (Rd) ≤ C t- α, for some explicit exponent α that depends on the parameters, d, q and p, according to the problem under consideration. © 2009 Elsevier Masson SAS. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00217824_v92_n2_p163_Ignat
url http://hdl.handle.net/20.500.12110/paper_00217824_v92_n2_p163_Ignat
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Pures Appl. 2009;92(2):163-187
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618737751162880
score 13.070432