Decay estimates for nonlinear nonlocal diffusion problems in the whole space

Autores
Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.
Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; Rumania
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; España
Materia
NONLOCAL DIFFUSION
EIGENVALUES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33894

id CONICETDig_39f375e15d77e67dca46d35bcac64ce4
oai_identifier_str oai:ri.conicet.gov.ar:11336/33894
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decay estimates for nonlinear nonlocal diffusion problems in the whole spaceIgnat, Liviu I.Pinasco, DamianRossi, Julio DanielSan Antolín, AngelNONLOCAL DIFFUSIONEIGENVALUEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; RumaniaFil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; EspañaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/rarapplication/pdfhttp://hdl.handle.net/11336/33894Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-4010021-76701565-8538CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-014-0011-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.2565info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-014-0011-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:30Zoai:ri.conicet.gov.ar:11336/33894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:31.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decay estimates for nonlinear nonlocal diffusion problems in the whole space
title Decay estimates for nonlinear nonlocal diffusion problems in the whole space
spellingShingle Decay estimates for nonlinear nonlocal diffusion problems in the whole space
Ignat, Liviu I.
NONLOCAL DIFFUSION
EIGENVALUES
title_short Decay estimates for nonlinear nonlocal diffusion problems in the whole space
title_full Decay estimates for nonlinear nonlocal diffusion problems in the whole space
title_fullStr Decay estimates for nonlinear nonlocal diffusion problems in the whole space
title_full_unstemmed Decay estimates for nonlinear nonlocal diffusion problems in the whole space
title_sort Decay estimates for nonlinear nonlocal diffusion problems in the whole space
dc.creator.none.fl_str_mv Ignat, Liviu I.
Pinasco, Damian
Rossi, Julio Daniel
San Antolín, Angel
author Ignat, Liviu I.
author_facet Ignat, Liviu I.
Pinasco, Damian
Rossi, Julio Daniel
San Antolín, Angel
author_role author
author2 Pinasco, Damian
Rossi, Julio Daniel
San Antolín, Angel
author2_role author
author
author
dc.subject.none.fl_str_mv NONLOCAL DIFFUSION
EIGENVALUES
topic NONLOCAL DIFFUSION
EIGENVALUES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.
Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; Rumania
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; España
description In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33894
Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-401
0021-7670
1565-8538
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33894
identifier_str_mv Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-401
0021-7670
1565-8538
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-014-0011-z
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.2565
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-014-0011-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/rar
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613145654460416
score 13.070432