Decay estimates for nonlinear nonlocal diffusion problems in the whole space
- Autores
- Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.
Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; Rumania
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; España - Materia
-
NONLOCAL DIFFUSION
EIGENVALUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33894
Ver los metadatos del registro completo
id |
CONICETDig_39f375e15d77e67dca46d35bcac64ce4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33894 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Decay estimates for nonlinear nonlocal diffusion problems in the whole spaceIgnat, Liviu I.Pinasco, DamianRossi, Julio DanielSan Antolín, AngelNONLOCAL DIFFUSIONEIGENVALUEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; RumaniaFil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; EspañaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/rarapplication/pdfhttp://hdl.handle.net/11336/33894Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-4010021-76701565-8538CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-014-0011-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.2565info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-014-0011-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:30Zoai:ri.conicet.gov.ar:11336/33894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:31.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
spellingShingle |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space Ignat, Liviu I. NONLOCAL DIFFUSION EIGENVALUES |
title_short |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_full |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_fullStr |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_full_unstemmed |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
title_sort |
Decay estimates for nonlinear nonlocal diffusion problems in the whole space |
dc.creator.none.fl_str_mv |
Ignat, Liviu I. Pinasco, Damian Rossi, Julio Daniel San Antolín, Angel |
author |
Ignat, Liviu I. |
author_facet |
Ignat, Liviu I. Pinasco, Damian Rossi, Julio Daniel San Antolín, Angel |
author_role |
author |
author2 |
Pinasco, Damian Rossi, Julio Daniel San Antolín, Angel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NONLOCAL DIFFUSION EIGENVALUES |
topic |
NONLOCAL DIFFUSION EIGENVALUES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞. Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; Rumania Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; España |
description |
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33894 Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-401 0021-7670 1565-8538 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33894 |
identifier_str_mv |
Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-401 0021-7670 1565-8538 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11854-014-0011-z info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.2565 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-014-0011-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/rar application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613145654460416 |
score |
13.070432 |