Asymptotic behavior for nonlocal diffusion equations
- Autores
- Chasseigne, E.; Chaves, M.; Rossi, J.D.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Pures Appl. 2006;86(3):271-291
- Materia
-
Dirichlet boundary conditions
Fractional Laplacian
Neumann boundary conditions
Nonlocal diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00217824_v86_n3_p271_Chasseigne
Ver los metadatos del registro completo
id |
BDUBAFCEN_af7725556a8ff04123231744685f3f8c |
---|---|
oai_identifier_str |
paperaa:paper_00217824_v86_n3_p271_Chasseigne |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Asymptotic behavior for nonlocal diffusion equationsChasseigne, E.Chaves, M.Rossi, J.D.Dirichlet boundary conditionsFractional LaplacianNeumann boundary conditionsNonlocal diffusionWe study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_ChasseigneJ. Math. Pures Appl. 2006;86(3):271-291reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:44Zpaperaa:paper_00217824_v86_n3_p271_ChasseigneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:45.444Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Asymptotic behavior for nonlocal diffusion equations |
title |
Asymptotic behavior for nonlocal diffusion equations |
spellingShingle |
Asymptotic behavior for nonlocal diffusion equations Chasseigne, E. Dirichlet boundary conditions Fractional Laplacian Neumann boundary conditions Nonlocal diffusion |
title_short |
Asymptotic behavior for nonlocal diffusion equations |
title_full |
Asymptotic behavior for nonlocal diffusion equations |
title_fullStr |
Asymptotic behavior for nonlocal diffusion equations |
title_full_unstemmed |
Asymptotic behavior for nonlocal diffusion equations |
title_sort |
Asymptotic behavior for nonlocal diffusion equations |
dc.creator.none.fl_str_mv |
Chasseigne, E. Chaves, M. Rossi, J.D. |
author |
Chasseigne, E. |
author_facet |
Chasseigne, E. Chaves, M. Rossi, J.D. |
author_role |
author |
author2 |
Chaves, M. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dirichlet boundary conditions Fractional Laplacian Neumann boundary conditions Nonlocal diffusion |
topic |
Dirichlet boundary conditions Fractional Laplacian Neumann boundary conditions Nonlocal diffusion |
dc.description.none.fl_txt_mv |
We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_Chasseigne |
url |
http://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_Chasseigne |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Pures Appl. 2006;86(3):271-291 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340706805350400 |
score |
12.623145 |