Asymptotic behavior for nonlocal diffusion equations

Autores
Chasseigne, E.; Chaves, M.; Rossi, J.D.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 < α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Pures Appl. 2006;86(3):271-291
Materia
Dirichlet boundary conditions
Fractional Laplacian
Neumann boundary conditions
Nonlocal diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00217824_v86_n3_p271_Chasseigne

id BDUBAFCEN_af7725556a8ff04123231744685f3f8c
oai_identifier_str paperaa:paper_00217824_v86_n3_p271_Chasseigne
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Asymptotic behavior for nonlocal diffusion equationsChasseigne, E.Chaves, M.Rossi, J.D.Dirichlet boundary conditionsFractional LaplacianNeumann boundary conditionsNonlocal diffusionWe study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 &lt; α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_ChasseigneJ. Math. Pures Appl. 2006;86(3):271-291reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:44Zpaperaa:paper_00217824_v86_n3_p271_ChasseigneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:45.444Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Asymptotic behavior for nonlocal diffusion equations
title Asymptotic behavior for nonlocal diffusion equations
spellingShingle Asymptotic behavior for nonlocal diffusion equations
Chasseigne, E.
Dirichlet boundary conditions
Fractional Laplacian
Neumann boundary conditions
Nonlocal diffusion
title_short Asymptotic behavior for nonlocal diffusion equations
title_full Asymptotic behavior for nonlocal diffusion equations
title_fullStr Asymptotic behavior for nonlocal diffusion equations
title_full_unstemmed Asymptotic behavior for nonlocal diffusion equations
title_sort Asymptotic behavior for nonlocal diffusion equations
dc.creator.none.fl_str_mv Chasseigne, E.
Chaves, M.
Rossi, J.D.
author Chasseigne, E.
author_facet Chasseigne, E.
Chaves, M.
Rossi, J.D.
author_role author
author2 Chaves, M.
Rossi, J.D.
author2_role author
author
dc.subject.none.fl_str_mv Dirichlet boundary conditions
Fractional Laplacian
Neumann boundary conditions
Nonlocal diffusion
topic Dirichlet boundary conditions
Fractional Laplacian
Neumann boundary conditions
Nonlocal diffusion
dc.description.none.fl_txt_mv We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 &lt; α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the asymptotic behavior for nonlocal diffusion models of the form ut = J * u - u in the whole RN or in a bounded smooth domain with Dirichlet or Neumann boundary conditions. In RN we obtain that the long time behavior of the solutions is determined by the behavior of the Fourier transform of J near the origin, which is linked to the behavior of J at infinity. If over(J, ̂) (ξ) = 1 - A | ξ |α + o (| ξ |α) (0 &lt; α ≤ 2), the asymptotic behavior is the same as the one for solutions of the evolution given by the α / 2 fractional power of the Laplacian. In particular when the nonlocal diffusion is given by a compactly supported kernel the asymptotic behavior is the same as the one for the heat equation, which is yet a local model. Concerning the Dirichlet problem for the nonlocal model we prove that the asymptotic behavior is given by an exponential decay to zero at a rate given by the first eigenvalue of an associated eigenvalue problem with profile an eigenfunction of the first eigenvalue. Finally, we analyze the Neumann problem and find an exponential convergence to the mean value of the initial condition. © 2006 Elsevier SAS. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_Chasseigne
url http://hdl.handle.net/20.500.12110/paper_00217824_v86_n3_p271_Chasseigne
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Pures Appl. 2006;86(3):271-291
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340706805350400
score 12.623145