Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión

Autores
Gratton, Julio; Vigo, Claudio Lionel Martín
Año de publicación
1994
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Las ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie. Lacey, Ockendon y Tayler (LOT) demostraron la existencia de soluciones de este tipo y dieron prescripciones para construirlas, pero no estudiaron sus propiedades. En este trabajo estudiamos soluciones para flujos viscogravitatorios con simetría plana y encontramos que pertenecen a tres clases, de acuerdo al valor del exponente de autosemejanza δ. El espectro de δ es continuo y abarca todo δ>1. Si 1<δ13/10 las soluciones presentan una estructura consistente en una sucesión infinita de comer shocks (CS) cuyo punto de acumulación es el frente. Si δ>13/10 las soluciones no presentan CS. Sólo las soluciones con CS tienen sentido físico
Non linear diffusion equations admit waiting-time solutions (WTS=STE) in vhich the front remains motionless during some finite period of time before advancing. The asymptotics of the WTS in the neighborhood of the front, for times near to the waiting time, is self similar (SS=AS) of the II type. Lacey, Ockendon and Tayler (LOT) have shown the existence of solutions of this kind given prescriptions for their construction, but did not study their properties. In this paper we make a detailed investigation of these solutions for viscous gravity flows in planar symmetry finding that belong to three classes, according to the value of the self similar exponent δ. The δ spectrum is continuous and includes all δ>1. If 1<δ13/10 the solutions show a structure formed by an infinite succession of corner shocks (CS), whose accumulation point is the front. If δ>13/10, the solutions do not show any CS. Only the solutions with CS have physical sense.
Fil: Gratton, Julio. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. Argentina
Fil: Vigo, Claudio Lionel Martín. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. Argentina
Fuente
An. (Asoc. Fís. Argent., En línea) 1994;01(06):326-331
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
afa:afa_v06_n01_p326

id BDUBAFCEN_723d440dd135269110b2c4a0c4e47a81
oai_identifier_str afa:afa_v06_n01_p326
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusiónGratton, JulioVigo, Claudio Lionel MartínLas ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie. Lacey, Ockendon y Tayler (LOT) demostraron la existencia de soluciones de este tipo y dieron prescripciones para construirlas, pero no estudiaron sus propiedades. En este trabajo estudiamos soluciones para flujos viscogravitatorios con simetría plana y encontramos que pertenecen a tres clases, de acuerdo al valor del exponente de autosemejanza δ. El espectro de δ es continuo y abarca todo δ>1. Si 1<δ13/10 las soluciones presentan una estructura consistente en una sucesión infinita de comer shocks (CS) cuyo punto de acumulación es el frente. Si δ>13/10 las soluciones no presentan CS. Sólo las soluciones con CS tienen sentido físicoNon linear diffusion equations admit waiting-time solutions (WTS=STE) in vhich the front remains motionless during some finite period of time before advancing. The asymptotics of the WTS in the neighborhood of the front, for times near to the waiting time, is self similar (SS=AS) of the II type. Lacey, Ockendon and Tayler (LOT) have shown the existence of solutions of this kind given prescriptions for their construction, but did not study their properties. In this paper we make a detailed investigation of these solutions for viscous gravity flows in planar symmetry finding that belong to three classes, according to the value of the self similar exponent δ. The δ spectrum is continuous and includes all δ>1. If 1<δ13/10 the solutions show a structure formed by an infinite succession of corner shocks (CS), whose accumulation point is the front. If δ>13/10, the solutions do not show any CS. Only the solutions with CS have physical sense.Fil: Gratton, Julio. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. ArgentinaFil: Vigo, Claudio Lionel Martín. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. ArgentinaAsociación Física Argentina1994info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://hdl.handle.net/20.500.12110/afa_v06_n01_p326An. (Asoc. Fís. Argent., En línea) 1994;01(06):326-331reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar2025-09-29T13:40:29Zafa:afa_v06_n01_p326Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:30.405Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
title Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
spellingShingle Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
Gratton, Julio
title_short Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
title_full Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
title_fullStr Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
title_full_unstemmed Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
title_sort Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión
dc.creator.none.fl_str_mv Gratton, Julio
Vigo, Claudio Lionel Martín
author Gratton, Julio
author_facet Gratton, Julio
Vigo, Claudio Lionel Martín
author_role author
author2 Vigo, Claudio Lionel Martín
author2_role author
dc.description.none.fl_txt_mv Las ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie. Lacey, Ockendon y Tayler (LOT) demostraron la existencia de soluciones de este tipo y dieron prescripciones para construirlas, pero no estudiaron sus propiedades. En este trabajo estudiamos soluciones para flujos viscogravitatorios con simetría plana y encontramos que pertenecen a tres clases, de acuerdo al valor del exponente de autosemejanza δ. El espectro de δ es continuo y abarca todo δ>1. Si 1<δ13/10 las soluciones presentan una estructura consistente en una sucesión infinita de comer shocks (CS) cuyo punto de acumulación es el frente. Si δ>13/10 las soluciones no presentan CS. Sólo las soluciones con CS tienen sentido físico
Non linear diffusion equations admit waiting-time solutions (WTS=STE) in vhich the front remains motionless during some finite period of time before advancing. The asymptotics of the WTS in the neighborhood of the front, for times near to the waiting time, is self similar (SS=AS) of the II type. Lacey, Ockendon and Tayler (LOT) have shown the existence of solutions of this kind given prescriptions for their construction, but did not study their properties. In this paper we make a detailed investigation of these solutions for viscous gravity flows in planar symmetry finding that belong to three classes, according to the value of the self similar exponent δ. The δ spectrum is continuous and includes all δ>1. If 1<δ13/10 the solutions show a structure formed by an infinite succession of corner shocks (CS), whose accumulation point is the front. If δ>13/10, the solutions do not show any CS. Only the solutions with CS have physical sense.
Fil: Gratton, Julio. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. Argentina
Fil: Vigo, Claudio Lionel Martín. Universidad de Buenos Aires - CONICET. Instituto de Física del Plasma (INFIP). Buenos Aires. Argentina
description Las ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie. Lacey, Ockendon y Tayler (LOT) demostraron la existencia de soluciones de este tipo y dieron prescripciones para construirlas, pero no estudiaron sus propiedades. En este trabajo estudiamos soluciones para flujos viscogravitatorios con simetría plana y encontramos que pertenecen a tres clases, de acuerdo al valor del exponente de autosemejanza δ. El espectro de δ es continuo y abarca todo δ>1. Si 1<δ13/10 las soluciones presentan una estructura consistente en una sucesión infinita de comer shocks (CS) cuyo punto de acumulación es el frente. Si δ>13/10 las soluciones no presentan CS. Sólo las soluciones con CS tienen sentido físico
publishDate 1994
dc.date.none.fl_str_mv 1994
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/afa_v06_n01_p326
url https://hdl.handle.net/20.500.12110/afa_v06_n01_p326
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv An. (Asoc. Fís. Argent., En línea) 1994;01(06):326-331
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618686502010880
score 13.070432