Intrinsic complexity estimates in polynomial optimization
- Autores
- Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Safey El Din, Mohab
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is known that point searching in basic semialgebraic sets and the search for globally minimal points in polynomial optimization tasks can be carried out using (sd) O(n) arithmetic operations, where n and s are the numbers of variables and constraints and d is the maximal degree of the polynomials involved. Subject to certain conditions, we associate to each of these problems an intrinsic system degree which becomes in worst case of order (nd) O(n) and which measures the intrinsic complexity of the task under consideration. We design non-uniform deterministic or uniform probabilistic algorithms of intrinsic, quasi-polynomial complexity which solve these problems.
Fil: Bank, Bernd. Universität zu Berlin; Alemania
Fil: Giusti, Marc. Ecole Polytechnique; Francia
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Safey El Din, Mohab. Universite Pierre et Marie Curie; Francia - Materia
-
DEGREE OF VARIETIES
INTRINSIC COMPLEXITY
POLYNOMIAL OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84333
Ver los metadatos del registro completo
id |
CONICETDig_468d32618fdd7028f6738277e680df11 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84333 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Intrinsic complexity estimates in polynomial optimizationBank, BerndGiusti, MarcHeintz, Joos UlrichSafey El Din, MohabDEGREE OF VARIETIESINTRINSIC COMPLEXITYPOLYNOMIAL OPTIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is known that point searching in basic semialgebraic sets and the search for globally minimal points in polynomial optimization tasks can be carried out using (sd) O(n) arithmetic operations, where n and s are the numbers of variables and constraints and d is the maximal degree of the polynomials involved. Subject to certain conditions, we associate to each of these problems an intrinsic system degree which becomes in worst case of order (nd) O(n) and which measures the intrinsic complexity of the task under consideration. We design non-uniform deterministic or uniform probabilistic algorithms of intrinsic, quasi-polynomial complexity which solve these problems.Fil: Bank, Bernd. Universität zu Berlin; AlemaniaFil: Giusti, Marc. Ecole Polytechnique; FranciaFil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Safey El Din, Mohab. Universite Pierre et Marie Curie; FranciaAcademic Press Inc Elsevier Science2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84333Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Safey El Din, Mohab; Intrinsic complexity estimates in polynomial optimization; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 4; 2-2014; 430-4430885-064XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2014.02.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X1400020Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:33Zoai:ri.conicet.gov.ar:11336/84333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:34.238CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Intrinsic complexity estimates in polynomial optimization |
title |
Intrinsic complexity estimates in polynomial optimization |
spellingShingle |
Intrinsic complexity estimates in polynomial optimization Bank, Bernd DEGREE OF VARIETIES INTRINSIC COMPLEXITY POLYNOMIAL OPTIMIZATION |
title_short |
Intrinsic complexity estimates in polynomial optimization |
title_full |
Intrinsic complexity estimates in polynomial optimization |
title_fullStr |
Intrinsic complexity estimates in polynomial optimization |
title_full_unstemmed |
Intrinsic complexity estimates in polynomial optimization |
title_sort |
Intrinsic complexity estimates in polynomial optimization |
dc.creator.none.fl_str_mv |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich Safey El Din, Mohab |
author |
Bank, Bernd |
author_facet |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich Safey El Din, Mohab |
author_role |
author |
author2 |
Giusti, Marc Heintz, Joos Ulrich Safey El Din, Mohab |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DEGREE OF VARIETIES INTRINSIC COMPLEXITY POLYNOMIAL OPTIMIZATION |
topic |
DEGREE OF VARIETIES INTRINSIC COMPLEXITY POLYNOMIAL OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is known that point searching in basic semialgebraic sets and the search for globally minimal points in polynomial optimization tasks can be carried out using (sd) O(n) arithmetic operations, where n and s are the numbers of variables and constraints and d is the maximal degree of the polynomials involved. Subject to certain conditions, we associate to each of these problems an intrinsic system degree which becomes in worst case of order (nd) O(n) and which measures the intrinsic complexity of the task under consideration. We design non-uniform deterministic or uniform probabilistic algorithms of intrinsic, quasi-polynomial complexity which solve these problems. Fil: Bank, Bernd. Universität zu Berlin; Alemania Fil: Giusti, Marc. Ecole Polytechnique; Francia Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Safey El Din, Mohab. Universite Pierre et Marie Curie; Francia |
description |
It is known that point searching in basic semialgebraic sets and the search for globally minimal points in polynomial optimization tasks can be carried out using (sd) O(n) arithmetic operations, where n and s are the numbers of variables and constraints and d is the maximal degree of the polynomials involved. Subject to certain conditions, we associate to each of these problems an intrinsic system degree which becomes in worst case of order (nd) O(n) and which measures the intrinsic complexity of the task under consideration. We design non-uniform deterministic or uniform probabilistic algorithms of intrinsic, quasi-polynomial complexity which solve these problems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84333 Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Safey El Din, Mohab; Intrinsic complexity estimates in polynomial optimization; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 4; 2-2014; 430-443 0885-064X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84333 |
identifier_str_mv |
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Safey El Din, Mohab; Intrinsic complexity estimates in polynomial optimization; Academic Press Inc Elsevier Science; Journal Of Complexity; 30; 4; 2-2014; 430-443 0885-064X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2014.02.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X1400020X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270049737375744 |
score |
13.13397 |