Range of semilinear operators for systems at resonance

Autores
Amster, P.; Kuna, M.P.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Electron. J. Differ. Equ. 2012;2012
Materia
Critical point theory
Resonant systems
Semilinear operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10726691_v2012_n_p_Amster

id BDUBAFCEN_4a7b889ab27d0a64669172ef97f8aeea
oai_identifier_str paperaa:paper_10726691_v2012_n_p_Amster
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Range of semilinear operators for systems at resonanceAmster, P.Kuna, M.P.Critical point theoryResonant systemsSemilinear operatorsFor a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_AmsterElectron. J. Differ. Equ. 2012;2012reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:31Zpaperaa:paper_10726691_v2012_n_p_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:32.938Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Range of semilinear operators for systems at resonance
title Range of semilinear operators for systems at resonance
spellingShingle Range of semilinear operators for systems at resonance
Amster, P.
Critical point theory
Resonant systems
Semilinear operators
title_short Range of semilinear operators for systems at resonance
title_full Range of semilinear operators for systems at resonance
title_fullStr Range of semilinear operators for systems at resonance
title_full_unstemmed Range of semilinear operators for systems at resonance
title_sort Range of semilinear operators for systems at resonance
dc.creator.none.fl_str_mv Amster, P.
Kuna, M.P.
author Amster, P.
author_facet Amster, P.
Kuna, M.P.
author_role author
author2 Kuna, M.P.
author2_role author
dc.subject.none.fl_str_mv Critical point theory
Resonant systems
Semilinear operators
topic Critical point theory
Resonant systems
Semilinear operators
dc.description.none.fl_txt_mv For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster
url http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Electron. J. Differ. Equ. 2012;2012
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784881455005696
score 12.982451