Range of semilinear operators for systems at resonance
- Autores
- Amster, P.; Kuna, M.P.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.
Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Electron. J. Differ. Equ. 2012;2012
- Materia
-
Critical point theory
Resonant systems
Semilinear operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10726691_v2012_n_p_Amster
Ver los metadatos del registro completo
| id |
BDUBAFCEN_4a7b889ab27d0a64669172ef97f8aeea |
|---|---|
| oai_identifier_str |
paperaa:paper_10726691_v2012_n_p_Amster |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Range of semilinear operators for systems at resonanceAmster, P.Kuna, M.P.Critical point theoryResonant systemsSemilinear operatorsFor a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos.Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_AmsterElectron. J. Differ. Equ. 2012;2012reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:31Zpaperaa:paper_10726691_v2012_n_p_AmsterInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:32.938Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Range of semilinear operators for systems at resonance |
| title |
Range of semilinear operators for systems at resonance |
| spellingShingle |
Range of semilinear operators for systems at resonance Amster, P. Critical point theory Resonant systems Semilinear operators |
| title_short |
Range of semilinear operators for systems at resonance |
| title_full |
Range of semilinear operators for systems at resonance |
| title_fullStr |
Range of semilinear operators for systems at resonance |
| title_full_unstemmed |
Range of semilinear operators for systems at resonance |
| title_sort |
Range of semilinear operators for systems at resonance |
| dc.creator.none.fl_str_mv |
Amster, P. Kuna, M.P. |
| author |
Amster, P. |
| author_facet |
Amster, P. Kuna, M.P. |
| author_role |
author |
| author2 |
Kuna, M.P. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Critical point theory Resonant systems Semilinear operators |
| topic |
Critical point theory Resonant systems Semilinear operators |
| dc.description.none.fl_txt_mv |
For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
For a vector function u: ℝ→ ℝ N we consider the system, where G: ℝ N → ℝ is a C 1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S: H 2 per → L 2([0, T],ℝ N) given by, where. Writing p(t) = p̄ + p̄(t), where, we present several resultsconcerning the topological structure of the set. © 2012 Texas State University-San Marcos. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster |
| url |
http://hdl.handle.net/20.500.12110/paper_10726691_v2012_n_p_Amster |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Electron. J. Differ. Equ. 2012;2012 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784881455005696 |
| score |
12.982451 |