General splitting methods for abstract semilinear evolution equations
- Autores
- Borgna, Juan Pablo; de Leo, Mariano Fernando; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present a unified picture concerning general splitting methods for solving a large class of semilinear problems: nonlinear Schr¨odinger, Schr¨odinger–Poisson, Gross– Pitaevskii equations, etc. This picture includes as particular instances known schemes such as LieTrotter, Strang, and Ruth–Yoshida. The convergence result is presented in suitable Hilbert spaces related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity. In addition, with extra requirements both on the regularity of the initial datum and on the nonlinearity, we show the linear convergence of these methods. We finally mention that in some special cases in which the linear convergence result is known, the assumptions we made are less restrictive.
Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Lie-Trotter
Splitting Integrators
Semilinear Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20971
Ver los metadatos del registro completo
id |
CONICETDig_acc69f28f6709d5e345940ba386358d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20971 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
General splitting methods for abstract semilinear evolution equationsBorgna, Juan Pablode Leo, Mariano FernandoRial, Diego FernandoSanchez Fernandez de la Vega, Constanza MarielLie-TrotterSplitting IntegratorsSemilinear Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present a unified picture concerning general splitting methods for solving a large class of semilinear problems: nonlinear Schr¨odinger, Schr¨odinger–Poisson, Gross– Pitaevskii equations, etc. This picture includes as particular instances known schemes such as LieTrotter, Strang, and Ruth–Yoshida. The convergence result is presented in suitable Hilbert spaces related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity. In addition, with extra requirements both on the regularity of the initial datum and on the nonlinearity, we show the linear convergence of these methods. We finally mention that in some special cases in which the linear convergence result is known, the assumptions we made are less restrictive.Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInternational Press Boston2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20971Borgna, Juan Pablo; de Leo, Mariano Fernando; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; General splitting methods for abstract semilinear evolution equations; International Press Boston; Communications in Mathematical Sciences; 13; 1; 1-2015; 83-1011539-6746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2015.v13.n1.a4info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0013/0001/a004/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:29Zoai:ri.conicet.gov.ar:11336/20971instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:29.565CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
General splitting methods for abstract semilinear evolution equations |
title |
General splitting methods for abstract semilinear evolution equations |
spellingShingle |
General splitting methods for abstract semilinear evolution equations Borgna, Juan Pablo Lie-Trotter Splitting Integrators Semilinear Problems |
title_short |
General splitting methods for abstract semilinear evolution equations |
title_full |
General splitting methods for abstract semilinear evolution equations |
title_fullStr |
General splitting methods for abstract semilinear evolution equations |
title_full_unstemmed |
General splitting methods for abstract semilinear evolution equations |
title_sort |
General splitting methods for abstract semilinear evolution equations |
dc.creator.none.fl_str_mv |
Borgna, Juan Pablo de Leo, Mariano Fernando Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author |
Borgna, Juan Pablo |
author_facet |
Borgna, Juan Pablo de Leo, Mariano Fernando Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author_role |
author |
author2 |
de Leo, Mariano Fernando Rial, Diego Fernando Sanchez Fernandez de la Vega, Constanza Mariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Lie-Trotter Splitting Integrators Semilinear Problems |
topic |
Lie-Trotter Splitting Integrators Semilinear Problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we present a unified picture concerning general splitting methods for solving a large class of semilinear problems: nonlinear Schr¨odinger, Schr¨odinger–Poisson, Gross– Pitaevskii equations, etc. This picture includes as particular instances known schemes such as LieTrotter, Strang, and Ruth–Yoshida. The convergence result is presented in suitable Hilbert spaces related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity. In addition, with extra requirements both on the regularity of the initial datum and on the nonlinearity, we show the linear convergence of these methods. We finally mention that in some special cases in which the linear convergence result is known, the assumptions we made are less restrictive. Fil: Borgna, Juan Pablo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we present a unified picture concerning general splitting methods for solving a large class of semilinear problems: nonlinear Schr¨odinger, Schr¨odinger–Poisson, Gross– Pitaevskii equations, etc. This picture includes as particular instances known schemes such as LieTrotter, Strang, and Ruth–Yoshida. The convergence result is presented in suitable Hilbert spaces related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity. In addition, with extra requirements both on the regularity of the initial datum and on the nonlinearity, we show the linear convergence of these methods. We finally mention that in some special cases in which the linear convergence result is known, the assumptions we made are less restrictive. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20971 Borgna, Juan Pablo; de Leo, Mariano Fernando; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; General splitting methods for abstract semilinear evolution equations; International Press Boston; Communications in Mathematical Sciences; 13; 1; 1-2015; 83-101 1539-6746 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20971 |
identifier_str_mv |
Borgna, Juan Pablo; de Leo, Mariano Fernando; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; General splitting methods for abstract semilinear evolution equations; International Press Boston; Communications in Mathematical Sciences; 13; 1; 1-2015; 83-101 1539-6746 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4310/CMS.2015.v13.n1.a4 info:eu-repo/semantics/altIdentifier/url/http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0013/0001/a004/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980954305462272 |
score |
13.004268 |