Periodic solutions of resonant systems with rapidly rotating nonlinearities

Autores
Amster, Pablo Gustavo; Clapp, Mónica
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Clapp, Mónica. Universidad Nacional Autónoma de México; México
Materia
Nonlinear Systems
Periodic Solutions
Rapidly Rotating Nonlinearities
Resonant Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14915

id CONICETDig_2561ec5e5de200fd66afcd897401d769
oai_identifier_str oai:ri.conicet.gov.ar:11336/14915
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Periodic solutions of resonant systems with rapidly rotating nonlinearitiesAmster, Pablo GustavoClapp, MónicaNonlinear SystemsPeriodic SolutionsRapidly Rotating NonlinearitiesResonant Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Clapp, Mónica. Universidad Nacional Autónoma de México; MéxicoAmer Inst Mathematical Sciences2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14915Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-3831078-0947enginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.373info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:54Zoai:ri.conicet.gov.ar:11336/14915instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:54.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Periodic solutions of resonant systems with rapidly rotating nonlinearities
title Periodic solutions of resonant systems with rapidly rotating nonlinearities
spellingShingle Periodic solutions of resonant systems with rapidly rotating nonlinearities
Amster, Pablo Gustavo
Nonlinear Systems
Periodic Solutions
Rapidly Rotating Nonlinearities
Resonant Problems
title_short Periodic solutions of resonant systems with rapidly rotating nonlinearities
title_full Periodic solutions of resonant systems with rapidly rotating nonlinearities
title_fullStr Periodic solutions of resonant systems with rapidly rotating nonlinearities
title_full_unstemmed Periodic solutions of resonant systems with rapidly rotating nonlinearities
title_sort Periodic solutions of resonant systems with rapidly rotating nonlinearities
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Clapp, Mónica
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Clapp, Mónica
author_role author
author2 Clapp, Mónica
author2_role author
dc.subject.none.fl_str_mv Nonlinear Systems
Periodic Solutions
Rapidly Rotating Nonlinearities
Resonant Problems
topic Nonlinear Systems
Periodic Solutions
Rapidly Rotating Nonlinearities
Resonant Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Clapp, Mónica. Universidad Nacional Autónoma de México; México
description We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14915
Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383
1078-0947
url http://hdl.handle.net/11336/14915
identifier_str_mv Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383
1078-0947
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295
info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.373
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Inst Mathematical Sciences
publisher.none.fl_str_mv Amer Inst Mathematical Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781907586514944
score 12.982451