Periodic solutions of resonant systems with rapidly rotating nonlinearities
- Autores
- Amster, Pablo Gustavo; Clapp, Mónica
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Clapp, Mónica. Universidad Nacional Autónoma de México; México - Materia
-
Nonlinear Systems
Periodic Solutions
Rapidly Rotating Nonlinearities
Resonant Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14915
Ver los metadatos del registro completo
| id |
CONICETDig_2561ec5e5de200fd66afcd897401d769 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14915 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Periodic solutions of resonant systems with rapidly rotating nonlinearitiesAmster, Pablo GustavoClapp, MónicaNonlinear SystemsPeriodic SolutionsRapidly Rotating NonlinearitiesResonant Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Clapp, Mónica. Universidad Nacional Autónoma de México; MéxicoAmer Inst Mathematical Sciences2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14915Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-3831078-0947enginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.373info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:54Zoai:ri.conicet.gov.ar:11336/14915instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:54.493CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| title |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| spellingShingle |
Periodic solutions of resonant systems with rapidly rotating nonlinearities Amster, Pablo Gustavo Nonlinear Systems Periodic Solutions Rapidly Rotating Nonlinearities Resonant Problems |
| title_short |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| title_full |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| title_fullStr |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| title_full_unstemmed |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| title_sort |
Periodic solutions of resonant systems with rapidly rotating nonlinearities |
| dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Clapp, Mónica |
| author |
Amster, Pablo Gustavo |
| author_facet |
Amster, Pablo Gustavo Clapp, Mónica |
| author_role |
author |
| author2 |
Clapp, Mónica |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Nonlinear Systems Periodic Solutions Rapidly Rotating Nonlinearities Resonant Problems |
| topic |
Nonlinear Systems Periodic Solutions Rapidly Rotating Nonlinearities Resonant Problems |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Clapp, Mónica. Universidad Nacional Autónoma de México; México |
| description |
We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14915 Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383 1078-0947 |
| url |
http://hdl.handle.net/11336/14915 |
| identifier_str_mv |
Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383 1078-0947 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295 info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2011.31.373 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
| publisher.none.fl_str_mv |
Amer Inst Mathematical Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781907586514944 |
| score |
12.982451 |