Range of semilinear operators for systems at resonance
- Autores
- Amster, Pablo Gustavo; Kuna, Mariel Paula
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
RESONANT SYSTEMS
SEMILINEAR OPERATORS
CRITICAL POINT THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/217652
Ver los metadatos del registro completo
| id |
CONICETDig_54597b6995e9e60ecb75bba53537376b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/217652 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Range of semilinear operators for systems at resonanceAmster, Pablo GustavoKuna, Mariel PaulaRESONANT SYSTEMSSEMILINEAR OPERATORSCRITICAL POINT THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaTexas State University. Department of Mathematics2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217652Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-131072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ejde.math.txstate.edu/Volumes/2012/209/abstr.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:07Zoai:ri.conicet.gov.ar:11336/217652instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:08.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Range of semilinear operators for systems at resonance |
| title |
Range of semilinear operators for systems at resonance |
| spellingShingle |
Range of semilinear operators for systems at resonance Amster, Pablo Gustavo RESONANT SYSTEMS SEMILINEAR OPERATORS CRITICAL POINT THEORY |
| title_short |
Range of semilinear operators for systems at resonance |
| title_full |
Range of semilinear operators for systems at resonance |
| title_fullStr |
Range of semilinear operators for systems at resonance |
| title_full_unstemmed |
Range of semilinear operators for systems at resonance |
| title_sort |
Range of semilinear operators for systems at resonance |
| dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Kuna, Mariel Paula |
| author |
Amster, Pablo Gustavo |
| author_facet |
Amster, Pablo Gustavo Kuna, Mariel Paula |
| author_role |
author |
| author2 |
Kuna, Mariel Paula |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
RESONANT SYSTEMS SEMILINEAR OPERATORS CRITICAL POINT THEORY |
| topic |
RESONANT SYSTEMS SEMILINEAR OPERATORS CRITICAL POINT THEORY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
| description |
For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/217652 Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13 1072-6691 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/217652 |
| identifier_str_mv |
Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13 1072-6691 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ejde.math.txstate.edu/Volumes/2012/209/abstr.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
| publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781776727375872 |
| score |
12.982451 |