Range of semilinear operators for systems at resonance

Autores
Amster, Pablo Gustavo; Kuna, Mariel Paula
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Materia
RESONANT SYSTEMS
SEMILINEAR OPERATORS
CRITICAL POINT THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217652

id CONICETDig_54597b6995e9e60ecb75bba53537376b
oai_identifier_str oai:ri.conicet.gov.ar:11336/217652
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Range of semilinear operators for systems at resonanceAmster, Pablo GustavoKuna, Mariel PaulaRESONANT SYSTEMSSEMILINEAR OPERATORSCRITICAL POINT THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaTexas State University. Department of Mathematics2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217652Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-131072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ejde.math.txstate.edu/Volumes/2012/209/abstr.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:24:07Zoai:ri.conicet.gov.ar:11336/217652instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:24:08.101CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Range of semilinear operators for systems at resonance
title Range of semilinear operators for systems at resonance
spellingShingle Range of semilinear operators for systems at resonance
Amster, Pablo Gustavo
RESONANT SYSTEMS
SEMILINEAR OPERATORS
CRITICAL POINT THEORY
title_short Range of semilinear operators for systems at resonance
title_full Range of semilinear operators for systems at resonance
title_fullStr Range of semilinear operators for systems at resonance
title_full_unstemmed Range of semilinear operators for systems at resonance
title_sort Range of semilinear operators for systems at resonance
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Kuna, Mariel Paula
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Kuna, Mariel Paula
author_role author
author2 Kuna, Mariel Paula
author2_role author
dc.subject.none.fl_str_mv RESONANT SYSTEMS
SEMILINEAR OPERATORS
CRITICAL POINT THEORY
topic RESONANT SYSTEMS
SEMILINEAR OPERATORS
CRITICAL POINT THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
description For a vector function u : R → RN we consider the system u 00(t) + ∇G(u(t)) = p(t) u(t) = u(t + T), where G : RN → R is a C1 function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator S : H2 per → L2 ([0, T], RN ) given by Su = u 00 + ∇G(u), where H2 per = {u ∈ H2 ([0, T], R N ); u(0) − u(T) = u 0 (0) − u 0 (T) = 0}. Writing p(t) = p + pe(t), where p := 1 T R T 0 p(t) dt, we present several results concerning the topological structure of the set I(pe) = {p ∈ R N ; p + pe ∈ Im(S)}.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217652
Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13
1072-6691
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217652
identifier_str_mv Amster, Pablo Gustavo; Kuna, Mariel Paula; Range of semilinear operators for systems at resonance; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2012; 209; 11-2012; 1-13
1072-6691
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ejde.math.txstate.edu/Volumes/2012/209/abstr.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Texas State University. Department of Mathematics
publisher.none.fl_str_mv Texas State University. Department of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781776727375872
score 12.982451