Products of Positive Operators

Autores
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Materia
PRODUCTS OF POSITIVE OPERATORS
SCHUR COMPLEMENTS
QUASI-SIMILARITY
QUASI-AFFINITY
LOCAL SPECTRAL THEORY
GENERALIZED SCALAR OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137793

id CONICETDig_bbfb6f7f83405f3b1801292c17017a17
oai_identifier_str oai:ri.conicet.gov.ar:11336/137793
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Products of Positive OperatorsContino, MaximilianoDritschel, Michael A.Maestripieri, Alejandra LauraMarcantognini Palacios, Stefania Alma MaríaPRODUCTS OF POSITIVE OPERATORSSCHUR COMPLEMENTSQUASI-SIMILARITYQUASI-AFFINITYLOCAL SPECTRAL THEORYGENERALIZED SCALAR OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Dritschel, Michael A.. University of Newcastle; Reino UnidoFil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaBirkhauser Verlag Ag2021-02-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137793Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-331661-8254CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-winfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-021-01083-winfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:38Zoai:ri.conicet.gov.ar:11336/137793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:38.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Products of Positive Operators
title Products of Positive Operators
spellingShingle Products of Positive Operators
Contino, Maximiliano
PRODUCTS OF POSITIVE OPERATORS
SCHUR COMPLEMENTS
QUASI-SIMILARITY
QUASI-AFFINITY
LOCAL SPECTRAL THEORY
GENERALIZED SCALAR OPERATORS
title_short Products of Positive Operators
title_full Products of Positive Operators
title_fullStr Products of Positive Operators
title_full_unstemmed Products of Positive Operators
title_sort Products of Positive Operators
dc.creator.none.fl_str_mv Contino, Maximiliano
Dritschel, Michael A.
Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author Contino, Maximiliano
author_facet Contino, Maximiliano
Dritschel, Michael A.
Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author_role author
author2 Dritschel, Michael A.
Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author2_role author
author
author
dc.subject.none.fl_str_mv PRODUCTS OF POSITIVE OPERATORS
SCHUR COMPLEMENTS
QUASI-SIMILARITY
QUASI-AFFINITY
LOCAL SPECTRAL THEORY
GENERALIZED SCALAR OPERATORS
topic PRODUCTS OF POSITIVE OPERATORS
SCHUR COMPLEMENTS
QUASI-SIMILARITY
QUASI-AFFINITY
LOCAL SPECTRAL THEORY
GENERALIZED SCALAR OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
description On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137793
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33
1661-8254
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137793
identifier_str_mv Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33
1661-8254
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-w
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-021-01083-w
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782458957135872
score 13.199325