Products of Positive Operators
- Autores
- Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
PRODUCTS OF POSITIVE OPERATORS
SCHUR COMPLEMENTS
QUASI-SIMILARITY
QUASI-AFFINITY
LOCAL SPECTRAL THEORY
GENERALIZED SCALAR OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137793
Ver los metadatos del registro completo
id |
CONICETDig_bbfb6f7f83405f3b1801292c17017a17 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137793 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Products of Positive OperatorsContino, MaximilianoDritschel, Michael A.Maestripieri, Alejandra LauraMarcantognini Palacios, Stefania Alma MaríaPRODUCTS OF POSITIVE OPERATORSSCHUR COMPLEMENTSQUASI-SIMILARITYQUASI-AFFINITYLOCAL SPECTRAL THEORYGENERALIZED SCALAR OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined.Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Dritschel, Michael A.. University of Newcastle; Reino UnidoFil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaBirkhauser Verlag Ag2021-02-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137793Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-331661-8254CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-winfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-021-01083-winfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:08:38Zoai:ri.conicet.gov.ar:11336/137793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:08:38.596CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Products of Positive Operators |
title |
Products of Positive Operators |
spellingShingle |
Products of Positive Operators Contino, Maximiliano PRODUCTS OF POSITIVE OPERATORS SCHUR COMPLEMENTS QUASI-SIMILARITY QUASI-AFFINITY LOCAL SPECTRAL THEORY GENERALIZED SCALAR OPERATORS |
title_short |
Products of Positive Operators |
title_full |
Products of Positive Operators |
title_fullStr |
Products of Positive Operators |
title_full_unstemmed |
Products of Positive Operators |
title_sort |
Products of Positive Operators |
dc.creator.none.fl_str_mv |
Contino, Maximiliano Dritschel, Michael A. Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author |
Contino, Maximiliano |
author_facet |
Contino, Maximiliano Dritschel, Michael A. Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author_role |
author |
author2 |
Dritschel, Michael A. Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
PRODUCTS OF POSITIVE OPERATORS SCHUR COMPLEMENTS QUASI-SIMILARITY QUASI-AFFINITY LOCAL SPECTRAL THEORY GENERALIZED SCALAR OPERATORS |
topic |
PRODUCTS OF POSITIVE OPERATORS SCHUR COMPLEMENTS QUASI-SIMILARITY QUASI-AFFINITY LOCAL SPECTRAL THEORY GENERALIZED SCALAR OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined. Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Dritschel, Michael A.. University of Newcastle; Reino Unido Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
On finite dimensional spaces, it is apparent that an operator is the product of two positive operators if and only if it is similar to a positive operator. Here, the class L+2 of bounded operators on separable infinite dimensional Hilbert spaces which can be written as the product of two bounded positive operators is studied. The structure is much richer, and connects (but is not equivalent to) quasi-similarity and quasi-affinity to a positive operator. The spectral properties of operators in L+2 are developed, and membership in L+2 among special classes, including algebraic and compact operators, is examined. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137793 Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33 1661-8254 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137793 |
identifier_str_mv |
Contino, Maximiliano; Dritschel, Michael A.; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; Products of Positive Operators; Birkhauser Verlag Ag; Complex Analysis and Operator Theory; 15; 2; 22-2-2021; 1-33 1661-8254 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11785-021-01083-w info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-021-01083-w info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2007.00680 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782458957135872 |
score |
13.199325 |