Singular Schrödinger operators as self-adjoint extensions of N-entire operators
- Autores
- Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Teschl, Gerald. Universidad de Viena; Austria
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina - Materia
-
DE BRANGES SPACES
DINGER OPERATORS
KODAIRA THEORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61550
Ver los metadatos del registro completo
id |
CONICETDig_27c25b476efbb65545a06b1173744908 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Singular Schrödinger operators as self-adjoint extensions of N-entire operatorsSilva, Luis O.Teschl, GeraldToloza, Julio HugoDE BRANGES SPACESDINGER OPERATORSKODAIRA THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Teschl, Gerald. Universidad de Viena; AustriaFil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; ArgentinaAmerican Mathematical Society2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61550Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-21150002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2014-12440-3/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12440-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:58Zoai:ri.conicet.gov.ar:11336/61550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:58.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
title |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
spellingShingle |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators Silva, Luis O. DE BRANGES SPACES DINGER OPERATORS KODAIRA THEORY |
title_short |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
title_full |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
title_fullStr |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
title_full_unstemmed |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
title_sort |
Singular Schrödinger operators as self-adjoint extensions of N-entire operators |
dc.creator.none.fl_str_mv |
Silva, Luis O. Teschl, Gerald Toloza, Julio Hugo |
author |
Silva, Luis O. |
author_facet |
Silva, Luis O. Teschl, Gerald Toloza, Julio Hugo |
author_role |
author |
author2 |
Teschl, Gerald Toloza, Julio Hugo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DE BRANGES SPACES DINGER OPERATORS KODAIRA THEORY |
topic |
DE BRANGES SPACES DINGER OPERATORS KODAIRA THEORY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation. Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México Fil: Teschl, Gerald. Universidad de Viena; Austria Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina |
description |
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61550 Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-2115 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61550 |
identifier_str_mv |
Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-2115 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2014-12440-3/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12440-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613464788566016 |
score |
13.070432 |