Singular Schrödinger operators as self-adjoint extensions of N-entire operators

Autores
Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Teschl, Gerald. Universidad de Viena; Austria
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina
Materia
DE BRANGES SPACES
DINGER OPERATORS
KODAIRA THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61550

id CONICETDig_27c25b476efbb65545a06b1173744908
oai_identifier_str oai:ri.conicet.gov.ar:11336/61550
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Singular Schrödinger operators as self-adjoint extensions of N-entire operatorsSilva, Luis O.Teschl, GeraldToloza, Julio HugoDE BRANGES SPACESDINGER OPERATORSKODAIRA THEORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Teschl, Gerald. Universidad de Viena; AustriaFil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; ArgentinaAmerican Mathematical Society2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61550Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-21150002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2014-12440-3/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12440-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:58Zoai:ri.conicet.gov.ar:11336/61550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:58.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Singular Schrödinger operators as self-adjoint extensions of N-entire operators
title Singular Schrödinger operators as self-adjoint extensions of N-entire operators
spellingShingle Singular Schrödinger operators as self-adjoint extensions of N-entire operators
Silva, Luis O.
DE BRANGES SPACES
DINGER OPERATORS
KODAIRA THEORY
title_short Singular Schrödinger operators as self-adjoint extensions of N-entire operators
title_full Singular Schrödinger operators as self-adjoint extensions of N-entire operators
title_fullStr Singular Schrödinger operators as self-adjoint extensions of N-entire operators
title_full_unstemmed Singular Schrödinger operators as self-adjoint extensions of N-entire operators
title_sort Singular Schrödinger operators as self-adjoint extensions of N-entire operators
dc.creator.none.fl_str_mv Silva, Luis O.
Teschl, Gerald
Toloza, Julio Hugo
author Silva, Luis O.
author_facet Silva, Luis O.
Teschl, Gerald
Toloza, Julio Hugo
author_role author
author2 Teschl, Gerald
Toloza, Julio Hugo
author2_role author
author
dc.subject.none.fl_str_mv DE BRANGES SPACES
DINGER OPERATORS
KODAIRA THEORY
topic DE BRANGES SPACES
DINGER OPERATORS
KODAIRA THEORY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Teschl, Gerald. Universidad de Viena; Austria
Fil: Toloza, Julio Hugo. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina
description We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be n-entire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this is equivalent to the Weyl function being in a generalized Herglotz–Nevanlinna class. As an application we show that perturbed Bessel operators are n-entire, improving the previously known conditions on the perturbation.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61550
Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-2115
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61550
identifier_str_mv Silva, Luis O.; Teschl, Gerald; Toloza, Julio Hugo; Singular Schrödinger operators as self-adjoint extensions of N-entire operators; American Mathematical Society; Proceedings of the American Mathematical Society; 143; 5; 5-2015; 2103-2115
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/0000-000-00/S0002-9939-2014-12440-3/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2014-12440-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613464788566016
score 13.070432