A logistic equation with refuge and nonlocal diffusion

Autores
García-Melián, J.; Rossi, J.D.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we consider the nonlocal stationary nonlinear problem (J * u)(x) - u(x) = -λu(x) + a(x)up(x) in a domain Ω, with the Dirichlet boundary condition u(x) = 0 in ℝN \\ Ω and p > 1. The kernel J involved in the convolution (J * u)(x) = ∫ℝN J(x - y)u(y) dy is a smooth, compactly supported nonnegative function with unit integral, while the weight a(x) is assumed to be nonnegative and is allowed to vanish in a smooth subdomain Ω0 of Ω. Both when a(x) is positive and when it vanishes in a subdomain, we completely discuss the issues of existence and uniqueness of positive solutions, as well as their behavior with respect to the parameter λ.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Commun. Pure Appl. Anal. 2009;8(6):2037-2053
Materia
Logistic problems
Nonlocal diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_15340392_v8_n6_p2037_GarciaMelian

id BDUBAFCEN_4745ed7ecc07f131d4dbb3cdfb75a4b0
oai_identifier_str paperaa:paper_15340392_v8_n6_p2037_GarciaMelian
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A logistic equation with refuge and nonlocal diffusionGarcía-Melián, J.Rossi, J.D.Logistic problemsNonlocal diffusionIn this work we consider the nonlocal stationary nonlinear problem (J * u)(x) - u(x) = -λu(x) + a(x)up(x) in a domain Ω, with the Dirichlet boundary condition u(x) = 0 in ℝN \\ Ω and p > 1. The kernel J involved in the convolution (J * u)(x) = ∫ℝN J(x - y)u(y) dy is a smooth, compactly supported nonnegative function with unit integral, while the weight a(x) is assumed to be nonnegative and is allowed to vanish in a smooth subdomain Ω0 of Ω. Both when a(x) is positive and when it vanishes in a subdomain, we completely discuss the issues of existence and uniqueness of positive solutions, as well as their behavior with respect to the parameter λ.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_15340392_v8_n6_p2037_GarciaMelianCommun. Pure Appl. Anal. 2009;8(6):2037-2053reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_15340392_v8_n6_p2037_GarciaMelianInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.639Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A logistic equation with refuge and nonlocal diffusion
title A logistic equation with refuge and nonlocal diffusion
spellingShingle A logistic equation with refuge and nonlocal diffusion
García-Melián, J.
Logistic problems
Nonlocal diffusion
title_short A logistic equation with refuge and nonlocal diffusion
title_full A logistic equation with refuge and nonlocal diffusion
title_fullStr A logistic equation with refuge and nonlocal diffusion
title_full_unstemmed A logistic equation with refuge and nonlocal diffusion
title_sort A logistic equation with refuge and nonlocal diffusion
dc.creator.none.fl_str_mv García-Melián, J.
Rossi, J.D.
author García-Melián, J.
author_facet García-Melián, J.
Rossi, J.D.
author_role author
author2 Rossi, J.D.
author2_role author
dc.subject.none.fl_str_mv Logistic problems
Nonlocal diffusion
topic Logistic problems
Nonlocal diffusion
dc.description.none.fl_txt_mv In this work we consider the nonlocal stationary nonlinear problem (J * u)(x) - u(x) = -λu(x) + a(x)up(x) in a domain Ω, with the Dirichlet boundary condition u(x) = 0 in ℝN \\ Ω and p > 1. The kernel J involved in the convolution (J * u)(x) = ∫ℝN J(x - y)u(y) dy is a smooth, compactly supported nonnegative function with unit integral, while the weight a(x) is assumed to be nonnegative and is allowed to vanish in a smooth subdomain Ω0 of Ω. Both when a(x) is positive and when it vanishes in a subdomain, we completely discuss the issues of existence and uniqueness of positive solutions, as well as their behavior with respect to the parameter λ.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this work we consider the nonlocal stationary nonlinear problem (J * u)(x) - u(x) = -λu(x) + a(x)up(x) in a domain Ω, with the Dirichlet boundary condition u(x) = 0 in ℝN \\ Ω and p > 1. The kernel J involved in the convolution (J * u)(x) = ∫ℝN J(x - y)u(y) dy is a smooth, compactly supported nonnegative function with unit integral, while the weight a(x) is assumed to be nonnegative and is allowed to vanish in a smooth subdomain Ω0 of Ω. Both when a(x) is positive and when it vanishes in a subdomain, we completely discuss the issues of existence and uniqueness of positive solutions, as well as their behavior with respect to the parameter λ.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_15340392_v8_n6_p2037_GarciaMelian
url http://hdl.handle.net/20.500.12110/paper_15340392_v8_n6_p2037_GarciaMelian
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Commun. Pure Appl. Anal. 2009;8(6):2037-2053
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733158400000
score 13.070432