Predictive distribution maps of rdent reservoir species of zoonoses in South America

Autores
Porcasi, X; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; Polop, Jaime J
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina.
Fil: Calderón, Gladys E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.
Fil: Lamfri, Mario. Instituto Gulich.Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Scavuzzo, Marcelo. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Sabattini, Marta S. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina.
We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.
Fuente
Mastozoología Neotropical 2005;12(2):199-216
Materia
Roedores
Zoonosis
América del Sur
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Sistema de Gestión del Conocimiento ANLIS MALBRÁN
Institución
Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"
OAI Identificador
oai:sgc.anlis.gob.ar:123456789/2142

id SGCANLIS_1207f9ad17477cb7f6007a17ed00c4ff
oai_identifier_str oai:sgc.anlis.gob.ar:123456789/2142
network_acronym_str SGCANLIS
repository_id_str a
network_name_str Sistema de Gestión del Conocimiento ANLIS MALBRÁN
spelling Predictive distribution maps of rdent reservoir species of zoonoses in South AmericaPorcasi, XCalderón, Gladys E.Lamfri, MarioScavuzzo, MarceloSabattini, Marta S.Polop, Jaime JRoedoresZoonosisAmérica del SurFil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina.Fil: Calderón, Gladys E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.Fil: Lamfri, Mario. Instituto Gulich.Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.Fil: Scavuzzo, Marcelo. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.Fil: Sabattini, Marta S. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina.We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.2005-12info:ar-repo/semantics/articuloinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdf0327-9383https://www.redalyc.org/pdf/457/45712207.pdfhttp://sgc.anlis.gob.ar/handle/123456789/2142Mastozoología Neotropical 2005;12(2):199-216reponame:Sistema de Gestión del Conocimiento ANLIS MALBRÁNinstname:Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"instacron:ANLISMastozoología Neotropicalenginfo:eu-repo/semantics/openAccess2025-10-23T11:20:56Zoai:sgc.anlis.gob.ar:123456789/2142Institucionalhttp://sgc.anlis.gob.ar/Organismo científico-tecnológicoNo correspondehttp://sgc.anlis.gob.ar/oai/biblioteca@anlis.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:a2025-10-23 11:20:57.057Sistema de Gestión del Conocimiento ANLIS MALBRÁN - Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"false
dc.title.none.fl_str_mv Predictive distribution maps of rdent reservoir species of zoonoses in South America
title Predictive distribution maps of rdent reservoir species of zoonoses in South America
spellingShingle Predictive distribution maps of rdent reservoir species of zoonoses in South America
Porcasi, X
Roedores
Zoonosis
América del Sur
title_short Predictive distribution maps of rdent reservoir species of zoonoses in South America
title_full Predictive distribution maps of rdent reservoir species of zoonoses in South America
title_fullStr Predictive distribution maps of rdent reservoir species of zoonoses in South America
title_full_unstemmed Predictive distribution maps of rdent reservoir species of zoonoses in South America
title_sort Predictive distribution maps of rdent reservoir species of zoonoses in South America
dc.creator.none.fl_str_mv Porcasi, X
Calderón, Gladys E.
Lamfri, Mario
Scavuzzo, Marcelo
Sabattini, Marta S.
Polop, Jaime J
author Porcasi, X
author_facet Porcasi, X
Calderón, Gladys E.
Lamfri, Mario
Scavuzzo, Marcelo
Sabattini, Marta S.
Polop, Jaime J
author_role author
author2 Calderón, Gladys E.
Lamfri, Mario
Scavuzzo, Marcelo
Sabattini, Marta S.
Polop, Jaime J
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Roedores
Zoonosis
América del Sur
topic Roedores
Zoonosis
América del Sur
dc.description.none.fl_txt_mv Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina.
Fil: Calderón, Gladys E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.
Fil: Lamfri, Mario. Instituto Gulich.Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Scavuzzo, Marcelo. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Sabattini, Marta S. Instituto Gulich. Comisión Nacional de Actividades Espaciales, Centro Espacial Teófilo Tabanera, Córdoba; Argentina.
Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina.
We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.
description Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:ar-repo/semantics/articulo
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv 0327-9383
https://www.redalyc.org/pdf/457/45712207.pdf
http://sgc.anlis.gob.ar/handle/123456789/2142
identifier_str_mv 0327-9383
url https://www.redalyc.org/pdf/457/45712207.pdf
http://sgc.anlis.gob.ar/handle/123456789/2142
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Mastozoología Neotropical
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Mastozoología Neotropical 2005;12(2):199-216
reponame:Sistema de Gestión del Conocimiento ANLIS MALBRÁN
instname:Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"
instacron:ANLIS
reponame_str Sistema de Gestión del Conocimiento ANLIS MALBRÁN
collection Sistema de Gestión del Conocimiento ANLIS MALBRÁN
instname_str Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"
instacron_str ANLIS
institution ANLIS
repository.name.fl_str_mv Sistema de Gestión del Conocimiento ANLIS MALBRÁN - Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"
repository.mail.fl_str_mv biblioteca@anlis.gov.ar
_version_ 1846788008499478528
score 12.471625