Predictive distribution maps of rdent reservoir species of zoonoses in South America
- Autores
- Porcasi Gomez, Ximena; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; Polop, Jaime Jose
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.
Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina
Fil: Calderón, Gladys E.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C. G. Malbrán”; Argentina
Fil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; Argentina
Fil: Scavuzzo, Marcelo. Comision Nacional de Actividades Espaciales; Argentina
Fil: Sabattini, Marta S.. Universidad Nacional de Córdoba; Argentina
Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina - Materia
-
Environmental factors
Geographic distribution
Rodent reservoirs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81622
Ver los metadatos del registro completo
| id |
CONICETDig_996e4b02f243febe4ce7fd22481837be |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81622 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Predictive distribution maps of rdent reservoir species of zoonoses in South AmericaPorcasi Gomez, XimenaCalderón, Gladys E.Lamfri, MarioScavuzzo, MarceloSabattini, Marta S.Polop, Jaime JoseEnvironmental factorsGeographic distributionRodent reservoirshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps.Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; ArgentinaFil: Calderón, Gladys E.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C. G. Malbrán”; ArgentinaFil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; ArgentinaFil: Scavuzzo, Marcelo. Comision Nacional de Actividades Espaciales; ArgentinaFil: Sabattini, Marta S.. Universidad Nacional de Córdoba; ArgentinaFil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; ArgentinaSociedad Argentina para el Estudio de los Mamíferos2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81622Porcasi Gomez, Ximena; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; et al.; Predictive distribution maps of rdent reservoir species of zoonoses in South America; Sociedad Argentina para el Estudio de los Mamíferos; Mastozoologia Neotropical; 12; 2; 12-2005; 199-2160327-93831666-0536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sarem.org.ar/wp-content/uploads/2012/11/SAREM_MastNeotrop_12-2_07_Porcasi.pdfinfo:eu-repo/semantics/altIdentifier/url/https://www.sarem.org.ar/mastozoologia-neotropical-vol12-no2/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:59Zoai:ri.conicet.gov.ar:11336/81622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:59.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| title |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| spellingShingle |
Predictive distribution maps of rdent reservoir species of zoonoses in South America Porcasi Gomez, Ximena Environmental factors Geographic distribution Rodent reservoirs |
| title_short |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| title_full |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| title_fullStr |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| title_full_unstemmed |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| title_sort |
Predictive distribution maps of rdent reservoir species of zoonoses in South America |
| dc.creator.none.fl_str_mv |
Porcasi Gomez, Ximena Calderón, Gladys E. Lamfri, Mario Scavuzzo, Marcelo Sabattini, Marta S. Polop, Jaime Jose |
| author |
Porcasi Gomez, Ximena |
| author_facet |
Porcasi Gomez, Ximena Calderón, Gladys E. Lamfri, Mario Scavuzzo, Marcelo Sabattini, Marta S. Polop, Jaime Jose |
| author_role |
author |
| author2 |
Calderón, Gladys E. Lamfri, Mario Scavuzzo, Marcelo Sabattini, Marta S. Polop, Jaime Jose |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Environmental factors Geographic distribution Rodent reservoirs |
| topic |
Environmental factors Geographic distribution Rodent reservoirs |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps. Fil: Porcasi Gomez, Ximena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina Fil: Calderón, Gladys E.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C. G. Malbrán”; Argentina Fil: Lamfri, Mario. Comision Nacional de Actividades Espaciales; Argentina Fil: Scavuzzo, Marcelo. Comision Nacional de Actividades Espaciales; Argentina Fil: Sabattini, Marta S.. Universidad Nacional de Córdoba; Argentina Fil: Polop, Jaime Jose. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina |
| description |
We model potential distribution for three species of rodents known to be reservoirs of zoonotic diseases: Calomys musculinus, Oligoryzomys flavescens and O. longicaudatus. These models provide general distribution hypotheses obtained using environmental data from record localities. Satellite remote sensing is then used to extrapolate climatic and ecological features of potentially suitable habitats for these rodents. In the three species mapped, we found high overall correspondence between predicted (based on environmental data) and specimen based distributions. The maps proposed here provide several advantages over dot and shaded outline maps. First, the predictive maps incorporate geographically explicit predictions of potential distribution into the test. Second, the validity of the predictive map can be appreciated when localities of previous records of the studied species, not used as training sites or used as control sites, are overlaid on the map. In this approach, environmental factors, criteria and analytical techniques are explicit and can be easily verified. Hence, we can temporally fit data in more precise distribution maps. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81622 Porcasi Gomez, Ximena; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; et al.; Predictive distribution maps of rdent reservoir species of zoonoses in South America; Sociedad Argentina para el Estudio de los Mamíferos; Mastozoologia Neotropical; 12; 2; 12-2005; 199-216 0327-9383 1666-0536 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/81622 |
| identifier_str_mv |
Porcasi Gomez, Ximena; Calderón, Gladys E.; Lamfri, Mario; Scavuzzo, Marcelo; Sabattini, Marta S.; et al.; Predictive distribution maps of rdent reservoir species of zoonoses in South America; Sociedad Argentina para el Estudio de los Mamíferos; Mastozoologia Neotropical; 12; 2; 12-2005; 199-216 0327-9383 1666-0536 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sarem.org.ar/wp-content/uploads/2012/11/SAREM_MastNeotrop_12-2_07_Porcasi.pdf info:eu-repo/semantics/altIdentifier/url/https://www.sarem.org.ar/mastozoologia-neotropical-vol12-no2/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Sociedad Argentina para el Estudio de los Mamíferos |
| publisher.none.fl_str_mv |
Sociedad Argentina para el Estudio de los Mamíferos |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782236996665344 |
| score |
12.982451 |