Framework para data mining educativo: formalizacion y aplicaciones
- Autores
- Sosa, Marcelo Omar; Chesñevar, Carlos Iván; Sosa Bruchmann, Eugenia C.
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las técnicas de data mining permiten analizar grandes volúmenes de datos en búsqueda de información oculta y relevante para la toma de decisiones. Estas se aplican en diversos campos en donde se almacenan grandes volúmenes de datos de las actividades realizadas y cuyo procesamiento no puede realizarse utilizando otras técnicas. En el caso de datos obtenidos de procesos educativos, éstos presentan características particulares que requieren técnicas y formas de interpretación de resultados especiales por lo que dio origen a la rama de data mining denominada Educational data mining o E.D.M. por sus siglas en inglés. El proceso educativo moderno incorpora la tecnología como medio de comunicación y de desarrollo de actividades fuera del ámbito del aula, si bien existen diferentes tipos, el más utilizado es el denominado blended learning ya que representa una adecuada combinación de actividades virtuales y presenciales con el objetivo de enriquecer el proceso. La actividad educativa así desarrollada genera grandes volúmenes de datos, su procesamiento con técnicas de data mining y la interpretación de los resultados obtenidos requiere la creación de un framework que agrupe las técnicas, prácticas y criterios que sean más adecuadas para el procesamiento de este tipo especial de datos y que ayuden al docente a su aplicación e interpretación.
Eje: Bases de Datos y Minería de Datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
proceso educativo
Educación
Data mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/52898
Ver los metadatos del registro completo
id |
SEDICI_fedd485cc5c2715d124117f15e670ed1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/52898 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Framework para data mining educativo: formalizacion y aplicacionesSosa, Marcelo OmarChesñevar, Carlos IvánSosa Bruchmann, Eugenia C.Ciencias Informáticasproceso educativoEducaciónData miningLas técnicas de data mining permiten analizar grandes volúmenes de datos en búsqueda de información oculta y relevante para la toma de decisiones. Estas se aplican en diversos campos en donde se almacenan grandes volúmenes de datos de las actividades realizadas y cuyo procesamiento no puede realizarse utilizando otras técnicas. En el caso de datos obtenidos de procesos educativos, éstos presentan características particulares que requieren técnicas y formas de interpretación de resultados especiales por lo que dio origen a la rama de data mining denominada Educational data mining o E.D.M. por sus siglas en inglés. El proceso educativo moderno incorpora la tecnología como medio de comunicación y de desarrollo de actividades fuera del ámbito del aula, si bien existen diferentes tipos, el más utilizado es el denominado blended learning ya que representa una adecuada combinación de actividades virtuales y presenciales con el objetivo de enriquecer el proceso. La actividad educativa así desarrollada genera grandes volúmenes de datos, su procesamiento con técnicas de data mining y la interpretación de los resultados obtenidos requiere la creación de un framework que agrupe las técnicas, prácticas y criterios que sean más adecuadas para el procesamiento de este tipo especial de datos y que ayuden al docente a su aplicación e interpretación.Eje: Bases de Datos y Minería de DatosRed de Universidades con Carreras en Informática (RedUNCI)2016-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf273-277http://sedici.unlp.edu.ar/handle/10915/52898spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2info:eu-repo/semantics/reference/hdl/10915/52766info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:37:28Zoai:sedici.unlp.edu.ar:10915/52898Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:37:28.587SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Framework para data mining educativo: formalizacion y aplicaciones |
title |
Framework para data mining educativo: formalizacion y aplicaciones |
spellingShingle |
Framework para data mining educativo: formalizacion y aplicaciones Sosa, Marcelo Omar Ciencias Informáticas proceso educativo Educación Data mining |
title_short |
Framework para data mining educativo: formalizacion y aplicaciones |
title_full |
Framework para data mining educativo: formalizacion y aplicaciones |
title_fullStr |
Framework para data mining educativo: formalizacion y aplicaciones |
title_full_unstemmed |
Framework para data mining educativo: formalizacion y aplicaciones |
title_sort |
Framework para data mining educativo: formalizacion y aplicaciones |
dc.creator.none.fl_str_mv |
Sosa, Marcelo Omar Chesñevar, Carlos Iván Sosa Bruchmann, Eugenia C. |
author |
Sosa, Marcelo Omar |
author_facet |
Sosa, Marcelo Omar Chesñevar, Carlos Iván Sosa Bruchmann, Eugenia C. |
author_role |
author |
author2 |
Chesñevar, Carlos Iván Sosa Bruchmann, Eugenia C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas proceso educativo Educación Data mining |
topic |
Ciencias Informáticas proceso educativo Educación Data mining |
dc.description.none.fl_txt_mv |
Las técnicas de data mining permiten analizar grandes volúmenes de datos en búsqueda de información oculta y relevante para la toma de decisiones. Estas se aplican en diversos campos en donde se almacenan grandes volúmenes de datos de las actividades realizadas y cuyo procesamiento no puede realizarse utilizando otras técnicas. En el caso de datos obtenidos de procesos educativos, éstos presentan características particulares que requieren técnicas y formas de interpretación de resultados especiales por lo que dio origen a la rama de data mining denominada Educational data mining o E.D.M. por sus siglas en inglés. El proceso educativo moderno incorpora la tecnología como medio de comunicación y de desarrollo de actividades fuera del ámbito del aula, si bien existen diferentes tipos, el más utilizado es el denominado blended learning ya que representa una adecuada combinación de actividades virtuales y presenciales con el objetivo de enriquecer el proceso. La actividad educativa así desarrollada genera grandes volúmenes de datos, su procesamiento con técnicas de data mining y la interpretación de los resultados obtenidos requiere la creación de un framework que agrupe las técnicas, prácticas y criterios que sean más adecuadas para el procesamiento de este tipo especial de datos y que ayuden al docente a su aplicación e interpretación. Eje: Bases de Datos y Minería de Datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Las técnicas de data mining permiten analizar grandes volúmenes de datos en búsqueda de información oculta y relevante para la toma de decisiones. Estas se aplican en diversos campos en donde se almacenan grandes volúmenes de datos de las actividades realizadas y cuyo procesamiento no puede realizarse utilizando otras técnicas. En el caso de datos obtenidos de procesos educativos, éstos presentan características particulares que requieren técnicas y formas de interpretación de resultados especiales por lo que dio origen a la rama de data mining denominada Educational data mining o E.D.M. por sus siglas en inglés. El proceso educativo moderno incorpora la tecnología como medio de comunicación y de desarrollo de actividades fuera del ámbito del aula, si bien existen diferentes tipos, el más utilizado es el denominado blended learning ya que representa una adecuada combinación de actividades virtuales y presenciales con el objetivo de enriquecer el proceso. La actividad educativa así desarrollada genera grandes volúmenes de datos, su procesamiento con técnicas de data mining y la interpretación de los resultados obtenidos requiere la creación de un framework que agrupe las técnicas, prácticas y criterios que sean más adecuadas para el procesamiento de este tipo especial de datos y que ayuden al docente a su aplicación e interpretación. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/52898 |
url |
http://sedici.unlp.edu.ar/handle/10915/52898 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-698-377-2 info:eu-repo/semantics/reference/hdl/10915/52766 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 273-277 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260233107275776 |
score |
13.13397 |