Solving the flow shop scheduling problem under evolutionary approaches

Autores
Vilanova, Gabriela; Pandolfi, Daniel; San Pedro, María Eugenia de; Villagra, Andrea; Bain, María Elena; Gallard, Raúl Hector
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The flow shop scheduling problem (FSSP) [12], has held the attention of many researchers. In a simplest usual situation, a set of jobs must follow the same route to be executed on a set of machines (resources) and the main objective is to optimize some performance variable (makespan, tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of machines is greater than or equal to three, the problem is NP-hard.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Solving the flow shop scheduling problem
evolutionary approaches
Scheduling
ARTIFICIAL INTELLIGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21670

id SEDICI_fe8b1d6671ce94db94e3127614b66d46
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21670
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Solving the flow shop scheduling problem under evolutionary approachesVilanova, GabrielaPandolfi, DanielSan Pedro, María Eugenia deVillagra, AndreaBain, María ElenaGallard, Raúl HectorCiencias InformáticasSolving the flow shop scheduling problemevolutionary approachesSchedulingARTIFICIAL INTELLIGENCEThe flow shop scheduling problem (FSSP) [12], has held the attention of many researchers. In a simplest usual situation, a set of jobs must follow the same route to be executed on a set of machines (resources) and the main objective is to optimize some performance variable (makespan, tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of machines is greater than or equal to three, the problem is NP-hard.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21670enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:43Zoai:sedici.unlp.edu.ar:10915/21670Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:43.351SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Solving the flow shop scheduling problem under evolutionary approaches
title Solving the flow shop scheduling problem under evolutionary approaches
spellingShingle Solving the flow shop scheduling problem under evolutionary approaches
Vilanova, Gabriela
Ciencias Informáticas
Solving the flow shop scheduling problem
evolutionary approaches
Scheduling
ARTIFICIAL INTELLIGENCE
title_short Solving the flow shop scheduling problem under evolutionary approaches
title_full Solving the flow shop scheduling problem under evolutionary approaches
title_fullStr Solving the flow shop scheduling problem under evolutionary approaches
title_full_unstemmed Solving the flow shop scheduling problem under evolutionary approaches
title_sort Solving the flow shop scheduling problem under evolutionary approaches
dc.creator.none.fl_str_mv Vilanova, Gabriela
Pandolfi, Daniel
San Pedro, María Eugenia de
Villagra, Andrea
Bain, María Elena
Gallard, Raúl Hector
author Vilanova, Gabriela
author_facet Vilanova, Gabriela
Pandolfi, Daniel
San Pedro, María Eugenia de
Villagra, Andrea
Bain, María Elena
Gallard, Raúl Hector
author_role author
author2 Pandolfi, Daniel
San Pedro, María Eugenia de
Villagra, Andrea
Bain, María Elena
Gallard, Raúl Hector
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Solving the flow shop scheduling problem
evolutionary approaches
Scheduling
ARTIFICIAL INTELLIGENCE
topic Ciencias Informáticas
Solving the flow shop scheduling problem
evolutionary approaches
Scheduling
ARTIFICIAL INTELLIGENCE
dc.description.none.fl_txt_mv The flow shop scheduling problem (FSSP) [12], has held the attention of many researchers. In a simplest usual situation, a set of jobs must follow the same route to be executed on a set of machines (resources) and the main objective is to optimize some performance variable (makespan, tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of machines is greater than or equal to three, the problem is NP-hard.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI)
description The flow shop scheduling problem (FSSP) [12], has held the attention of many researchers. In a simplest usual situation, a set of jobs must follow the same route to be executed on a set of machines (resources) and the main objective is to optimize some performance variable (makespan, tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of machines is greater than or equal to three, the problem is NP-hard.
publishDate 2001
dc.date.none.fl_str_mv 2001-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21670
url http://sedici.unlp.edu.ar/handle/10915/21670
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615805474439168
score 13.070432