Facing the job shop scheduling problem wih hybrid evolutionary algorithms
- Autores
- Salto, Carolina; Fernandez, Natalia; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Evolutionary algorithms (EAs) offer a robust approach to problem solving. EAs are extremely flexible and can be extended by incorporating alternative approaches to favour he search process. One way is to hybridize an evolutionary algorithm with standard local search procedures [10,11], such as hill climbing [12], simulated annealing [15] and tabu search [4]. Individual solutions can be improved using local techniques and then placed back in competition with other members of the population. The hybrid approach complements the properties of evolutionary algorithm and local search heuristic methods. An evolutionary algorithm is used to perform global search to escape from local optima, while local search is used to conduct fine-tuning.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Facing the job shop scheduling problem
hybrid evolutionary algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21660
Ver los metadatos del registro completo
id |
SEDICI_8f9a233b8477ad728735e3adf65d3901 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21660 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Facing the job shop scheduling problem wih hybrid evolutionary algorithmsSalto, CarolinaFernandez, NataliaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasFacing the job shop scheduling problemhybrid evolutionary algorithmsSchedulingARTIFICIAL INTELLIGENCEAlgorithmsEvolutionary algorithms (EAs) offer a robust approach to problem solving. EAs are extremely flexible and can be extended by incorporating alternative approaches to favour he search process. One way is to hybridize an evolutionary algorithm with standard local search procedures [10,11], such as hill climbing [12], simulated annealing [15] and tabu search [4]. Individual solutions can be improved using local techniques and then placed back in competition with other members of the population. The hybrid approach complements the properties of evolutionary algorithm and local search heuristic methods. An evolutionary algorithm is used to perform global search to escape from local optima, while local search is used to conduct fine-tuning.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21660enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:07Zoai:sedici.unlp.edu.ar:10915/21660Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:07.573SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
title |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
spellingShingle |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms Salto, Carolina Ciencias Informáticas Facing the job shop scheduling problem hybrid evolutionary algorithms Scheduling ARTIFICIAL INTELLIGENCE Algorithms |
title_short |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
title_full |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
title_fullStr |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
title_full_unstemmed |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
title_sort |
Facing the job shop scheduling problem wih hybrid evolutionary algorithms |
dc.creator.none.fl_str_mv |
Salto, Carolina Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Facing the job shop scheduling problem hybrid evolutionary algorithms Scheduling ARTIFICIAL INTELLIGENCE Algorithms |
topic |
Ciencias Informáticas Facing the job shop scheduling problem hybrid evolutionary algorithms Scheduling ARTIFICIAL INTELLIGENCE Algorithms |
dc.description.none.fl_txt_mv |
Evolutionary algorithms (EAs) offer a robust approach to problem solving. EAs are extremely flexible and can be extended by incorporating alternative approaches to favour he search process. One way is to hybridize an evolutionary algorithm with standard local search procedures [10,11], such as hill climbing [12], simulated annealing [15] and tabu search [4]. Individual solutions can be improved using local techniques and then placed back in competition with other members of the population. The hybrid approach complements the properties of evolutionary algorithm and local search heuristic methods. An evolutionary algorithm is used to perform global search to escape from local optima, while local search is used to conduct fine-tuning. Eje: Inteligencia Computacional - Metaheurísticas Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Evolutionary algorithms (EAs) offer a robust approach to problem solving. EAs are extremely flexible and can be extended by incorporating alternative approaches to favour he search process. One way is to hybridize an evolutionary algorithm with standard local search procedures [10,11], such as hill climbing [12], simulated annealing [15] and tabu search [4]. Individual solutions can be improved using local techniques and then placed back in competition with other members of the population. The hybrid approach complements the properties of evolutionary algorithm and local search heuristic methods. An evolutionary algorithm is used to perform global search to escape from local optima, while local search is used to conduct fine-tuning. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21660 |
url |
http://sedici.unlp.edu.ar/handle/10915/21660 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903768360812544 |
score |
12.993085 |