Multiobjective evolutionary algorithms for job shop scheduling

Autores
Esquivel, Susana Cecilia; Gallard, Raúl Hector; Ferrero, Sergio W.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Multiobjective evolutionary algorithms
job shop scheduling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21667

id SEDICI_0eb8c8a7333c2462f682b04092fa19e7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21667
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multiobjective evolutionary algorithms for job shop schedulingEsquivel, Susana CeciliaGallard, Raúl HectorFerrero, Sergio W.Ciencias InformáticasAlgorithmsSchedulingARTIFICIAL INTELLIGENCEMultiobjective evolutionary algorithmsjob shop schedulingA job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21667enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:32Zoai:sedici.unlp.edu.ar:10915/21667Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:33.211SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multiobjective evolutionary algorithms for job shop scheduling
title Multiobjective evolutionary algorithms for job shop scheduling
spellingShingle Multiobjective evolutionary algorithms for job shop scheduling
Esquivel, Susana Cecilia
Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Multiobjective evolutionary algorithms
job shop scheduling
title_short Multiobjective evolutionary algorithms for job shop scheduling
title_full Multiobjective evolutionary algorithms for job shop scheduling
title_fullStr Multiobjective evolutionary algorithms for job shop scheduling
title_full_unstemmed Multiobjective evolutionary algorithms for job shop scheduling
title_sort Multiobjective evolutionary algorithms for job shop scheduling
dc.creator.none.fl_str_mv Esquivel, Susana Cecilia
Gallard, Raúl Hector
Ferrero, Sergio W.
author Esquivel, Susana Cecilia
author_facet Esquivel, Susana Cecilia
Gallard, Raúl Hector
Ferrero, Sergio W.
author_role author
author2 Gallard, Raúl Hector
Ferrero, Sergio W.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Multiobjective evolutionary algorithms
job shop scheduling
topic Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Multiobjective evolutionary algorithms
job shop scheduling
dc.description.none.fl_txt_mv A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI)
description A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.
publishDate 2001
dc.date.none.fl_str_mv 2001-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21667
url http://sedici.unlp.edu.ar/handle/10915/21667
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260113296982016
score 13.13397