Multiobjective evolutionary algorithms for job shop scheduling
- Autores
- Esquivel, Susana Cecilia; Gallard, Raúl Hector; Ferrero, Sergio W.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE
Multiobjective evolutionary algorithms
job shop scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21667
Ver los metadatos del registro completo
id |
SEDICI_0eb8c8a7333c2462f682b04092fa19e7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21667 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Multiobjective evolutionary algorithms for job shop schedulingEsquivel, Susana CeciliaGallard, Raúl HectorFerrero, Sergio W.Ciencias InformáticasAlgorithmsSchedulingARTIFICIAL INTELLIGENCEMultiobjective evolutionary algorithmsjob shop schedulingA job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21667enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:32Zoai:sedici.unlp.edu.ar:10915/21667Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:33.211SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Multiobjective evolutionary algorithms for job shop scheduling |
title |
Multiobjective evolutionary algorithms for job shop scheduling |
spellingShingle |
Multiobjective evolutionary algorithms for job shop scheduling Esquivel, Susana Cecilia Ciencias Informáticas Algorithms Scheduling ARTIFICIAL INTELLIGENCE Multiobjective evolutionary algorithms job shop scheduling |
title_short |
Multiobjective evolutionary algorithms for job shop scheduling |
title_full |
Multiobjective evolutionary algorithms for job shop scheduling |
title_fullStr |
Multiobjective evolutionary algorithms for job shop scheduling |
title_full_unstemmed |
Multiobjective evolutionary algorithms for job shop scheduling |
title_sort |
Multiobjective evolutionary algorithms for job shop scheduling |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Gallard, Raúl Hector Ferrero, Sergio W. |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Gallard, Raúl Hector Ferrero, Sergio W. |
author_role |
author |
author2 |
Gallard, Raúl Hector Ferrero, Sergio W. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms Scheduling ARTIFICIAL INTELLIGENCE Multiobjective evolutionary algorithms job shop scheduling |
topic |
Ciencias Informáticas Algorithms Scheduling ARTIFICIAL INTELLIGENCE Multiobjective evolutionary algorithms job shop scheduling |
dc.description.none.fl_txt_mv |
A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution. Eje: Inteligencia Computacional - Metaheurísticas Red de Universidades con Carreras en Informática (RedUNCI) |
description |
A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not necessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules according to some criterion. Common variables to optimize are makespan, machine idleness, lateness and total weighted completion time. According to this variables different objectives can be devised. Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization, have long been used in many application areas where a problem involves multiple objectives, often conflicting, to be met or optimized. Multistage evolution and cooperative population search (CPS), as extended evolutive models, can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking the Pareto Front. Multirecombination and Local Search were introduced in the CPS method in order to speed up and to improve the evolution. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21667 |
url |
http://sedici.unlp.edu.ar/handle/10915/21667 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260113296982016 |
score |
13.13397 |