An evolutionary approach to the parallel task scheduling problem
- Autores
- Esquivel, Susana Cecilia; Gatica, Claudia Ruth; Gallard, Raúl Hector
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.
Eje: Redes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
evolutionary approach
scheduling problem
ARTIFICIAL INTELLIGENCE
Scheduling
Parallel - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22225
Ver los metadatos del registro completo
id |
SEDICI_a79933a0957e5e43e7683cb8400574be |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22225 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An evolutionary approach to the parallel task scheduling problemEsquivel, Susana CeciliaGatica, Claudia RuthGallard, Raúl HectorCiencias Informáticasevolutionary approachscheduling problemARTIFICIAL INTELLIGENCESchedulingParallelA parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.Eje: Redes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)1999-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22225enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:20Zoai:sedici.unlp.edu.ar:10915/22225Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:21.016SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An evolutionary approach to the parallel task scheduling problem |
title |
An evolutionary approach to the parallel task scheduling problem |
spellingShingle |
An evolutionary approach to the parallel task scheduling problem Esquivel, Susana Cecilia Ciencias Informáticas evolutionary approach scheduling problem ARTIFICIAL INTELLIGENCE Scheduling Parallel |
title_short |
An evolutionary approach to the parallel task scheduling problem |
title_full |
An evolutionary approach to the parallel task scheduling problem |
title_fullStr |
An evolutionary approach to the parallel task scheduling problem |
title_full_unstemmed |
An evolutionary approach to the parallel task scheduling problem |
title_sort |
An evolutionary approach to the parallel task scheduling problem |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Gatica, Claudia Ruth Gallard, Raúl Hector |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Gatica, Claudia Ruth Gallard, Raúl Hector |
author_role |
author |
author2 |
Gatica, Claudia Ruth Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas evolutionary approach scheduling problem ARTIFICIAL INTELLIGENCE Scheduling Parallel |
topic |
Ciencias Informáticas evolutionary approach scheduling problem ARTIFICIAL INTELLIGENCE Scheduling Parallel |
dc.description.none.fl_txt_mv |
A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation. Eje: Redes y sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22225 |
url |
http://sedici.unlp.edu.ar/handle/10915/22225 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903773013344257 |
score |
12.993085 |