An evolutionary approach to the parallel task scheduling problem

Autores
Esquivel, Susana Cecilia; Gatica, Claudia Ruth; Gallard, Raúl Hector
Año de publicación
1999
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.
Eje: Redes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
evolutionary approach
scheduling problem
ARTIFICIAL INTELLIGENCE
Scheduling
Parallel
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22225

id SEDICI_a79933a0957e5e43e7683cb8400574be
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22225
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An evolutionary approach to the parallel task scheduling problemEsquivel, Susana CeciliaGatica, Claudia RuthGallard, Raúl HectorCiencias Informáticasevolutionary approachscheduling problemARTIFICIAL INTELLIGENCESchedulingParallelA parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.Eje: Redes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)1999-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22225enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:20Zoai:sedici.unlp.edu.ar:10915/22225Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:21.016SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An evolutionary approach to the parallel task scheduling problem
title An evolutionary approach to the parallel task scheduling problem
spellingShingle An evolutionary approach to the parallel task scheduling problem
Esquivel, Susana Cecilia
Ciencias Informáticas
evolutionary approach
scheduling problem
ARTIFICIAL INTELLIGENCE
Scheduling
Parallel
title_short An evolutionary approach to the parallel task scheduling problem
title_full An evolutionary approach to the parallel task scheduling problem
title_fullStr An evolutionary approach to the parallel task scheduling problem
title_full_unstemmed An evolutionary approach to the parallel task scheduling problem
title_sort An evolutionary approach to the parallel task scheduling problem
dc.creator.none.fl_str_mv Esquivel, Susana Cecilia
Gatica, Claudia Ruth
Gallard, Raúl Hector
author Esquivel, Susana Cecilia
author_facet Esquivel, Susana Cecilia
Gatica, Claudia Ruth
Gallard, Raúl Hector
author_role author
author2 Gatica, Claudia Ruth
Gallard, Raúl Hector
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary approach
scheduling problem
ARTIFICIAL INTELLIGENCE
Scheduling
Parallel
topic Ciencias Informáticas
evolutionary approach
scheduling problem
ARTIFICIAL INTELLIGENCE
Scheduling
Parallel
dc.description.none.fl_txt_mv A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.
Eje: Redes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description A parallel program, when running, can be conceived a set of parallel components (tasks) which can be executed according to sorne precedence relationship. In this case efficient scheduling of tasks permits to take full.advantage of the computational power provided by a multiprocessor or a multicomputer system. This involves the assignment of partially ordered tasks onto the system architecture processing components. Ihis work shows the problem of allocating a number of nonidentical tasks in a multiprocessor or multicomputer system. Ihe model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode representation.
publishDate 1999
dc.date.none.fl_str_mv 1999-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22225
url http://sedici.unlp.edu.ar/handle/10915/22225
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842903773013344257
score 12.993085