Different evolutionary approaches to solve the flow shop scheduling problem
- Autores
- Esquivel, Susana Cecilia; Gallard, Raúl Hector; Zuppa, Federico
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Over the past three decades extensive search have been done on pure m-machine flow shop problems. Many researchers faced the Flow Shop Scheduling Problem (FSSP) by means of well-known heuristics which, are successfully used for certain instances of the problem providing a single acceptable solution. Current trends involve distinct evolutionary computation approaches. This work shows [5, 6, 7] implementations of diverse evolutionary approaches on a set of flow shop scheduling instances, including latest approaches using a multirecombination feature, Multiple Crossovers per Couple (MCPC), and partial replacement of the population when possible stagnation is detected. A discussion on implementation details, analysis and a comparison of evolutionary and conventional approaches to the problem are shown.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Different evolutionary approaches
ARTIFICIAL INTELLIGENCE
Scheduling
flow shop scheduling problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21654
Ver los metadatos del registro completo
id |
SEDICI_2c40cf8e8ddb7402552db3d7a682c484 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21654 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Different evolutionary approaches to solve the flow shop scheduling problemEsquivel, Susana CeciliaGallard, Raúl HectorZuppa, FedericoCiencias InformáticasDifferent evolutionary approachesARTIFICIAL INTELLIGENCESchedulingflow shop scheduling problemOver the past three decades extensive search have been done on pure m-machine flow shop problems. Many researchers faced the Flow Shop Scheduling Problem (FSSP) by means of well-known heuristics which, are successfully used for certain instances of the problem providing a single acceptable solution. Current trends involve distinct evolutionary computation approaches. This work shows [5, 6, 7] implementations of diverse evolutionary approaches on a set of flow shop scheduling instances, including latest approaches using a multirecombination feature, Multiple Crossovers per Couple (MCPC), and partial replacement of the population when possible stagnation is detected. A discussion on implementation details, analysis and a comparison of evolutionary and conventional approaches to the problem are shown.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21654enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:43Zoai:sedici.unlp.edu.ar:10915/21654Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:43.301SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Different evolutionary approaches to solve the flow shop scheduling problem |
title |
Different evolutionary approaches to solve the flow shop scheduling problem |
spellingShingle |
Different evolutionary approaches to solve the flow shop scheduling problem Esquivel, Susana Cecilia Ciencias Informáticas Different evolutionary approaches ARTIFICIAL INTELLIGENCE Scheduling flow shop scheduling problem |
title_short |
Different evolutionary approaches to solve the flow shop scheduling problem |
title_full |
Different evolutionary approaches to solve the flow shop scheduling problem |
title_fullStr |
Different evolutionary approaches to solve the flow shop scheduling problem |
title_full_unstemmed |
Different evolutionary approaches to solve the flow shop scheduling problem |
title_sort |
Different evolutionary approaches to solve the flow shop scheduling problem |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Gallard, Raúl Hector Zuppa, Federico |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Gallard, Raúl Hector Zuppa, Federico |
author_role |
author |
author2 |
Gallard, Raúl Hector Zuppa, Federico |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Different evolutionary approaches ARTIFICIAL INTELLIGENCE Scheduling flow shop scheduling problem |
topic |
Ciencias Informáticas Different evolutionary approaches ARTIFICIAL INTELLIGENCE Scheduling flow shop scheduling problem |
dc.description.none.fl_txt_mv |
Over the past three decades extensive search have been done on pure m-machine flow shop problems. Many researchers faced the Flow Shop Scheduling Problem (FSSP) by means of well-known heuristics which, are successfully used for certain instances of the problem providing a single acceptable solution. Current trends involve distinct evolutionary computation approaches. This work shows [5, 6, 7] implementations of diverse evolutionary approaches on a set of flow shop scheduling instances, including latest approaches using a multirecombination feature, Multiple Crossovers per Couple (MCPC), and partial replacement of the population when possible stagnation is detected. A discussion on implementation details, analysis and a comparison of evolutionary and conventional approaches to the problem are shown. Eje: Inteligencia Computacional - Metaheurísticas Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Over the past three decades extensive search have been done on pure m-machine flow shop problems. Many researchers faced the Flow Shop Scheduling Problem (FSSP) by means of well-known heuristics which, are successfully used for certain instances of the problem providing a single acceptable solution. Current trends involve distinct evolutionary computation approaches. This work shows [5, 6, 7] implementations of diverse evolutionary approaches on a set of flow shop scheduling instances, including latest approaches using a multirecombination feature, Multiple Crossovers per Couple (MCPC), and partial replacement of the population when possible stagnation is detected. A discussion on implementation details, analysis and a comparison of evolutionary and conventional approaches to the problem are shown. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21654 |
url |
http://sedici.unlp.edu.ar/handle/10915/21654 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615805130506240 |
score |
13.069144 |