The Shannon entropy as a measure of diffusion in multidimensional dynamical systems
- Autores
- Giordano, Claudia Marcela; Cincotta, Pablo Miguel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′ coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.
Instituto de Astrofísica de La Plata - Materia
-
Astronomía
Física
Chaotic diffusion
Multidimensional dynamical systems
Entropy
Rate of diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/141472
Ver los metadatos del registro completo
id |
SEDICI_fa568e33b59d95eee3243cad34be85bf |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/141472 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systemsGiordano, Claudia MarcelaCincotta, Pablo MiguelAstronomíaFísicaChaotic diffusionMultidimensional dynamical systemsEntropyRate of diffusionIn the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′ coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.Instituto de Astrofísica de La Plata2018-04-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-21http://sedici.unlp.edu.ar/handle/10915/141472enginfo:eu-repo/semantics/altIdentifier/issn/0923-2958info:eu-repo/semantics/altIdentifier/issn/1572-9478info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-018-9832-xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:14Zoai:sedici.unlp.edu.ar:10915/141472Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:14.465SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
title |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
spellingShingle |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems Giordano, Claudia Marcela Astronomía Física Chaotic diffusion Multidimensional dynamical systems Entropy Rate of diffusion |
title_short |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
title_full |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
title_fullStr |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
title_full_unstemmed |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
title_sort |
The Shannon entropy as a measure of diffusion in multidimensional dynamical systems |
dc.creator.none.fl_str_mv |
Giordano, Claudia Marcela Cincotta, Pablo Miguel |
author |
Giordano, Claudia Marcela |
author_facet |
Giordano, Claudia Marcela Cincotta, Pablo Miguel |
author_role |
author |
author2 |
Cincotta, Pablo Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Astronomía Física Chaotic diffusion Multidimensional dynamical systems Entropy Rate of diffusion |
topic |
Astronomía Física Chaotic diffusion Multidimensional dynamical systems Entropy Rate of diffusion |
dc.description.none.fl_txt_mv |
In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′ coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results. Instituto de Astrofísica de La Plata |
description |
In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′ coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/141472 |
url |
http://sedici.unlp.edu.ar/handle/10915/141472 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0923-2958 info:eu-repo/semantics/altIdentifier/issn/1572-9478 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-018-9832-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-21 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260541068804096 |
score |
13.13397 |