Correlations in area preserving maps: A Shannon entropy approach

Autores
Cincotta, Pablo Miguel; Shevchenko, Ivan I.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Shevchenko, Ivan I.. Saint Petersburg State University; Rusia
Materia
AREA PRESERVING MAPS
CHAOTIC DIFFUSION
SHANNON ENTROPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/145349

id CONICETDig_567ac34f925b88a67547d5a007fd30bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/145349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Correlations in area preserving maps: A Shannon entropy approachCincotta, Pablo MiguelShevchenko, Ivan I.AREA PRESERVING MAPSCHAOTIC DIFFUSIONSHANNON ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Shevchenko, Ivan I.. Saint Petersburg State University; RusiaElsevier Science2020-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145349Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-260167-2789CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2019.132235info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016727891930065X?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:18Zoai:ri.conicet.gov.ar:11336/145349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:18.514CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Correlations in area preserving maps: A Shannon entropy approach
title Correlations in area preserving maps: A Shannon entropy approach
spellingShingle Correlations in area preserving maps: A Shannon entropy approach
Cincotta, Pablo Miguel
AREA PRESERVING MAPS
CHAOTIC DIFFUSION
SHANNON ENTROPY
title_short Correlations in area preserving maps: A Shannon entropy approach
title_full Correlations in area preserving maps: A Shannon entropy approach
title_fullStr Correlations in area preserving maps: A Shannon entropy approach
title_full_unstemmed Correlations in area preserving maps: A Shannon entropy approach
title_sort Correlations in area preserving maps: A Shannon entropy approach
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Shevchenko, Ivan I.
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Shevchenko, Ivan I.
author_role author
author2 Shevchenko, Ivan I.
author2_role author
dc.subject.none.fl_str_mv AREA PRESERVING MAPS
CHAOTIC DIFFUSION
SHANNON ENTROPY
topic AREA PRESERVING MAPS
CHAOTIC DIFFUSION
SHANNON ENTROPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Shevchenko, Ivan I.. Saint Petersburg State University; Rusia
description In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/145349
Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-26
0167-2789
CONICET Digital
CONICET
url http://hdl.handle.net/11336/145349
identifier_str_mv Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-26
0167-2789
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2019.132235
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016727891930065X?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613760923205632
score 13.070432