Correlations in area preserving maps: A Shannon entropy approach
- Autores
- Cincotta, Pablo Miguel; Shevchenko, Ivan I.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Shevchenko, Ivan I.. Saint Petersburg State University; Rusia - Materia
-
AREA PRESERVING MAPS
CHAOTIC DIFFUSION
SHANNON ENTROPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/145349
Ver los metadatos del registro completo
id |
CONICETDig_567ac34f925b88a67547d5a007fd30bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/145349 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Correlations in area preserving maps: A Shannon entropy approachCincotta, Pablo MiguelShevchenko, Ivan I.AREA PRESERVING MAPSCHAOTIC DIFFUSIONSHANNON ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Shevchenko, Ivan I.. Saint Petersburg State University; RusiaElsevier Science2020-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145349Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-260167-2789CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2019.132235info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016727891930065X?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:18Zoai:ri.conicet.gov.ar:11336/145349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:18.514CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Correlations in area preserving maps: A Shannon entropy approach |
title |
Correlations in area preserving maps: A Shannon entropy approach |
spellingShingle |
Correlations in area preserving maps: A Shannon entropy approach Cincotta, Pablo Miguel AREA PRESERVING MAPS CHAOTIC DIFFUSION SHANNON ENTROPY |
title_short |
Correlations in area preserving maps: A Shannon entropy approach |
title_full |
Correlations in area preserving maps: A Shannon entropy approach |
title_fullStr |
Correlations in area preserving maps: A Shannon entropy approach |
title_full_unstemmed |
Correlations in area preserving maps: A Shannon entropy approach |
title_sort |
Correlations in area preserving maps: A Shannon entropy approach |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Shevchenko, Ivan I. |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Shevchenko, Ivan I. |
author_role |
author |
author2 |
Shevchenko, Ivan I. |
author2_role |
author |
dc.subject.none.fl_str_mv |
AREA PRESERVING MAPS CHAOTIC DIFFUSION SHANNON ENTROPY |
topic |
AREA PRESERVING MAPS CHAOTIC DIFFUSION SHANNON ENTROPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion. Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Shevchenko, Ivan I.. Saint Petersburg State University; Rusia |
description |
In the present work we extend and generalize the formulation of the Shannon entropy as a measure of correlations in the phase space variables of any dynamical system. By means of theoretical arguments we show that the Shannon entropy is a quite sensitive approach to detect correlations in the state variables. The formulation given herein includes the analysis of the evolution of a single variable of the system, for instance a given phase; the phase space variables of a 2-dimensional model or the action space of a 4-dimensional map or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct measure of the volume of the phase space occupied by a given trajectory as well as a direct measure of the correlations among the successive values of the phase space variables in any dynamical system, in particular when the motion is highly chaotic. We use the standard map model at large values of the perturbation parameter to confront all the analytical estimates with the numerical simulations. The numerical–experimental results show the efficiency of the entropy in revealing the fine structure of the phase space, in particular the existence of small stability domains (islands around periodic solutions) that affect the diffusion. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/145349 Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-26 0167-2789 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/145349 |
identifier_str_mv |
Cincotta, Pablo Miguel; Shevchenko, Ivan I.; Correlations in area preserving maps: A Shannon entropy approach; Elsevier Science; Physica D - Nonlinear Phenomena; 402; 15-1-2020; 1-26 0167-2789 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physd.2019.132235 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S016727891930065X?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613760923205632 |
score |
13.070432 |