On the chaotic diffusion in multidimensional Hamiltonian systems
- Autores
- Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Martí, Javier Guillermo; Beaugé, Cristian
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Astronomía
Chaotic diffusion
Hamiltonian systems
Planetary dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140914
Ver los metadatos del registro completo
id |
SEDICI_a591fabad32311c179d5e8e56d6eeae3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140914 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On the chaotic diffusion in multidimensional Hamiltonian systemsCincotta, Pablo MiguelGiordano, Claudia MarcelaMartí, Javier GuillermoBeaugé, CristianAstronomíaChaotic diffusionHamiltonian systemsPlanetary dynamicsWe present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.Facultad de Ciencias Astronómicas y Geofísicas2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/140914enginfo:eu-repo/semantics/altIdentifier/issn/0923-2958info:eu-repo/semantics/altIdentifier/issn/1572-9478info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-017-9797-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:22Zoai:sedici.unlp.edu.ar:10915/140914Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:23.14SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On the chaotic diffusion in multidimensional Hamiltonian systems |
title |
On the chaotic diffusion in multidimensional Hamiltonian systems |
spellingShingle |
On the chaotic diffusion in multidimensional Hamiltonian systems Cincotta, Pablo Miguel Astronomía Chaotic diffusion Hamiltonian systems Planetary dynamics |
title_short |
On the chaotic diffusion in multidimensional Hamiltonian systems |
title_full |
On the chaotic diffusion in multidimensional Hamiltonian systems |
title_fullStr |
On the chaotic diffusion in multidimensional Hamiltonian systems |
title_full_unstemmed |
On the chaotic diffusion in multidimensional Hamiltonian systems |
title_sort |
On the chaotic diffusion in multidimensional Hamiltonian systems |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Martí, Javier Guillermo Beaugé, Cristian |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Martí, Javier Guillermo Beaugé, Cristian |
author_role |
author |
author2 |
Giordano, Claudia Marcela Martí, Javier Guillermo Beaugé, Cristian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Astronomía Chaotic diffusion Hamiltonian systems Planetary dynamics |
topic |
Astronomía Chaotic diffusion Hamiltonian systems Planetary dynamics |
dc.description.none.fl_txt_mv |
We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140914 |
url |
http://sedici.unlp.edu.ar/handle/10915/140914 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0923-2958 info:eu-repo/semantics/altIdentifier/issn/1572-9478 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-017-9797-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616203485577216 |
score |
13.069144 |