On the chaotic diffusion in multidimensional Hamiltonian systems

Autores
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Martí, Javier Guillermo; Beaugé, Cristian
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Astronomía
Chaotic diffusion
Hamiltonian systems
Planetary dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140914

id SEDICI_a591fabad32311c179d5e8e56d6eeae3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140914
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On the chaotic diffusion in multidimensional Hamiltonian systemsCincotta, Pablo MiguelGiordano, Claudia MarcelaMartí, Javier GuillermoBeaugé, CristianAstronomíaChaotic diffusionHamiltonian systemsPlanetary dynamicsWe present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.Facultad de Ciencias Astronómicas y Geofísicas2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/140914enginfo:eu-repo/semantics/altIdentifier/issn/0923-2958info:eu-repo/semantics/altIdentifier/issn/1572-9478info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-017-9797-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:22Zoai:sedici.unlp.edu.ar:10915/140914Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:23.14SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On the chaotic diffusion in multidimensional Hamiltonian systems
title On the chaotic diffusion in multidimensional Hamiltonian systems
spellingShingle On the chaotic diffusion in multidimensional Hamiltonian systems
Cincotta, Pablo Miguel
Astronomía
Chaotic diffusion
Hamiltonian systems
Planetary dynamics
title_short On the chaotic diffusion in multidimensional Hamiltonian systems
title_full On the chaotic diffusion in multidimensional Hamiltonian systems
title_fullStr On the chaotic diffusion in multidimensional Hamiltonian systems
title_full_unstemmed On the chaotic diffusion in multidimensional Hamiltonian systems
title_sort On the chaotic diffusion in multidimensional Hamiltonian systems
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Giordano, Claudia Marcela
Martí, Javier Guillermo
Beaugé, Cristian
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Giordano, Claudia Marcela
Martí, Javier Guillermo
Beaugé, Cristian
author_role author
author2 Giordano, Claudia Marcela
Martí, Javier Guillermo
Beaugé, Cristian
author2_role author
author
author
dc.subject.none.fl_str_mv Astronomía
Chaotic diffusion
Hamiltonian systems
Planetary dynamics
topic Astronomía
Chaotic diffusion
Hamiltonian systems
Planetary dynamics
dc.description.none.fl_txt_mv We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.
Facultad de Ciencias Astronómicas y Geofísicas
description We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140914
url http://sedici.unlp.edu.ar/handle/10915/140914
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0923-2958
info:eu-repo/semantics/altIdentifier/issn/1572-9478
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-017-9797-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616203485577216
score 13.069144