Phase correlations in chaotic dynamics: a Shannon entropy measure

Autores
Cincotta, Pablo Miguel; Giordano, Claudia Marcela
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments, we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low-dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnold’s Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near-integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Materia
DIFFUSION
PHASE CORRELATIONS
SHANNON ENTROPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/82434

id CONICETDig_f7981590b50c751b767e80b0926f37f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/82434
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Phase correlations in chaotic dynamics: a Shannon entropy measureCincotta, Pablo MiguelGiordano, Claudia MarcelaDIFFUSIONPHASE CORRELATIONSSHANNON ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present work, we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments, we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low-dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnold’s Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near-integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaSpringer2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82434Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Phase correlations in chaotic dynamics: a Shannon entropy measure; Springer; Celestial Mechanics & Dynamical Astronomy; 130; 74; 11-2018; 1-170923-2958CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-018-9871-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10569-018-9871-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:32Zoai:ri.conicet.gov.ar:11336/82434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:32.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Phase correlations in chaotic dynamics: a Shannon entropy measure
title Phase correlations in chaotic dynamics: a Shannon entropy measure
spellingShingle Phase correlations in chaotic dynamics: a Shannon entropy measure
Cincotta, Pablo Miguel
DIFFUSION
PHASE CORRELATIONS
SHANNON ENTROPY
title_short Phase correlations in chaotic dynamics: a Shannon entropy measure
title_full Phase correlations in chaotic dynamics: a Shannon entropy measure
title_fullStr Phase correlations in chaotic dynamics: a Shannon entropy measure
title_full_unstemmed Phase correlations in chaotic dynamics: a Shannon entropy measure
title_sort Phase correlations in chaotic dynamics: a Shannon entropy measure
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Giordano, Claudia Marcela
author_role author
author2 Giordano, Claudia Marcela
author2_role author
dc.subject.none.fl_str_mv DIFFUSION
PHASE CORRELATIONS
SHANNON ENTROPY
topic DIFFUSION
PHASE CORRELATIONS
SHANNON ENTROPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work, we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments, we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low-dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnold’s Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near-integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
description In the present work, we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments, we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low-dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnold’s Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near-integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/82434
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Phase correlations in chaotic dynamics: a Shannon entropy measure; Springer; Celestial Mechanics & Dynamical Astronomy; 130; 74; 11-2018; 1-17
0923-2958
CONICET Digital
CONICET
url http://hdl.handle.net/11336/82434
identifier_str_mv Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Phase correlations in chaotic dynamics: a Shannon entropy measure; Springer; Celestial Mechanics & Dynamical Astronomy; 130; 74; 11-2018; 1-17
0923-2958
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-018-9871-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10569-018-9871-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270123682955264
score 13.13397