Shannon entropy diffusion estimates: sensitivity on the parameters of the method
- Autores
- Cincotta, Pablo Miguel; Giordano, Claudia Marcela; Alves Silva, Raphael; Beaugé, Cristián
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present effort, we revisit the Shannon entropy approach for the study of both the extent and the rate of diffusion in a given dynamical system. In particular, we provide a theoretical and numerical study of the dependence of the formulation on the parameters of the method. We succeed in deriving not only a diffusion coefficient, DS, but also an estimate of the macroscopical instability time for the system under study. Dealing with a toy model, namely a 4D symplectic application that represents the dynamics around a junction of resonances of different order, and an a particular case of the planar three-body problem, the HD20003 planetary system, we obtain numerical evidence that DS is a robust measure of the diffusion rate, no significant dependence on the free parameter of the entropy formulation (the size of the elements of the partition) being observed. Moreover, successful results concerning the estimation of macroscopical instability times obtained from DS are presented in both cases.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata - Materia
-
Astronomía
Chaotic diffusion
Resonances
Shannon entropy
Three-body problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/145267
Ver los metadatos del registro completo
id |
SEDICI_000c0ce8b9e09a1dd32b39ab4e0c2fb5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/145267 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Shannon entropy diffusion estimates: sensitivity on the parameters of the methodCincotta, Pablo MiguelGiordano, Claudia MarcelaAlves Silva, RaphaelBeaugé, CristiánAstronomíaChaotic diffusionResonancesShannon entropyThree-body problemIn the present effort, we revisit the Shannon entropy approach for the study of both the extent and the rate of diffusion in a given dynamical system. In particular, we provide a theoretical and numerical study of the dependence of the formulation on the parameters of the method. We succeed in deriving not only a diffusion coefficient, D<sub>S</sub>, but also an estimate of the macroscopical instability time for the system under study. Dealing with a toy model, namely a 4D symplectic application that represents the dynamics around a junction of resonances of different order, and an a particular case of the planar three-body problem, the HD20003 planetary system, we obtain numerical evidence that D<sub>S</sub> is a robust measure of the diffusion rate, no significant dependence on the free parameter of the entropy formulation (the size of the elements of the partition) being observed. Moreover, successful results concerning the estimation of macroscopical instability times obtained from D<sub>S</sub> are presented in both cases.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/145267enginfo:eu-repo/semantics/altIdentifier/issn/0923-2958info:eu-repo/semantics/altIdentifier/issn/1572-9478info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-021-10006-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:23Zoai:sedici.unlp.edu.ar:10915/145267Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:23.49SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
title |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
spellingShingle |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method Cincotta, Pablo Miguel Astronomía Chaotic diffusion Resonances Shannon entropy Three-body problem |
title_short |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
title_full |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
title_fullStr |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
title_full_unstemmed |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
title_sort |
Shannon entropy diffusion estimates: sensitivity on the parameters of the method |
dc.creator.none.fl_str_mv |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Alves Silva, Raphael Beaugé, Cristián |
author |
Cincotta, Pablo Miguel |
author_facet |
Cincotta, Pablo Miguel Giordano, Claudia Marcela Alves Silva, Raphael Beaugé, Cristián |
author_role |
author |
author2 |
Giordano, Claudia Marcela Alves Silva, Raphael Beaugé, Cristián |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Astronomía Chaotic diffusion Resonances Shannon entropy Three-body problem |
topic |
Astronomía Chaotic diffusion Resonances Shannon entropy Three-body problem |
dc.description.none.fl_txt_mv |
In the present effort, we revisit the Shannon entropy approach for the study of both the extent and the rate of diffusion in a given dynamical system. In particular, we provide a theoretical and numerical study of the dependence of the formulation on the parameters of the method. We succeed in deriving not only a diffusion coefficient, D<sub>S</sub>, but also an estimate of the macroscopical instability time for the system under study. Dealing with a toy model, namely a 4D symplectic application that represents the dynamics around a junction of resonances of different order, and an a particular case of the planar three-body problem, the HD20003 planetary system, we obtain numerical evidence that D<sub>S</sub> is a robust measure of the diffusion rate, no significant dependence on the free parameter of the entropy formulation (the size of the elements of the partition) being observed. Moreover, successful results concerning the estimation of macroscopical instability times obtained from D<sub>S</sub> are presented in both cases. Facultad de Ciencias Astronómicas y Geofísicas Instituto de Astrofísica de La Plata |
description |
In the present effort, we revisit the Shannon entropy approach for the study of both the extent and the rate of diffusion in a given dynamical system. In particular, we provide a theoretical and numerical study of the dependence of the formulation on the parameters of the method. We succeed in deriving not only a diffusion coefficient, D<sub>S</sub>, but also an estimate of the macroscopical instability time for the system under study. Dealing with a toy model, namely a 4D symplectic application that represents the dynamics around a junction of resonances of different order, and an a particular case of the planar three-body problem, the HD20003 planetary system, we obtain numerical evidence that D<sub>S</sub> is a robust measure of the diffusion rate, no significant dependence on the free parameter of the entropy formulation (the size of the elements of the partition) being observed. Moreover, successful results concerning the estimation of macroscopical instability times obtained from D<sub>S</sub> are presented in both cases. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/145267 |
url |
http://sedici.unlp.edu.ar/handle/10915/145267 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0923-2958 info:eu-repo/semantics/altIdentifier/issn/1572-9478 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10569-021-10006-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260542366941184 |
score |
13.13397 |