Mixed estimates for singular integrals on weighted Hardy spaces
- Autores
- Cejas, María Eugenia; Dalmasso, Estefanía
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces Hpw, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A∞ class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the Hpw-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound Aq–A∞ result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993).
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Weighted Hardy spaces
Singular integrals
Mixed estimates
Calderón–Zygmund operators
Fourier multipliers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/131013
Ver los metadatos del registro completo
id |
SEDICI_f4e9c9c7a47d9b53bc79a7dcb8da9e02 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/131013 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Mixed estimates for singular integrals on weighted Hardy spacesCejas, María EugeniaDalmasso, EstefaníaCiencias ExactasWeighted Hardy spacesSingular integralsMixed estimatesCalderón–Zygmund operatorsFourier multipliersIn this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces H<sup>p</sup><sub>w</sub>, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A<sub>∞</sub> class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the H<sup>p</sup><sub>w</sub>-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound A<sub>q</sub>–A<sub>∞</sub> result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993).Facultad de Ciencias Exactas2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf745-766http://sedici.unlp.edu.ar/handle/10915/131013enginfo:eu-repo/semantics/altIdentifier/issn/1139-1138info:eu-repo/semantics/altIdentifier/issn/1988-2807info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-019-00331-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:34:19Zoai:sedici.unlp.edu.ar:10915/131013Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:34:19.585SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Mixed estimates for singular integrals on weighted Hardy spaces |
title |
Mixed estimates for singular integrals on weighted Hardy spaces |
spellingShingle |
Mixed estimates for singular integrals on weighted Hardy spaces Cejas, María Eugenia Ciencias Exactas Weighted Hardy spaces Singular integrals Mixed estimates Calderón–Zygmund operators Fourier multipliers |
title_short |
Mixed estimates for singular integrals on weighted Hardy spaces |
title_full |
Mixed estimates for singular integrals on weighted Hardy spaces |
title_fullStr |
Mixed estimates for singular integrals on weighted Hardy spaces |
title_full_unstemmed |
Mixed estimates for singular integrals on weighted Hardy spaces |
title_sort |
Mixed estimates for singular integrals on weighted Hardy spaces |
dc.creator.none.fl_str_mv |
Cejas, María Eugenia Dalmasso, Estefanía |
author |
Cejas, María Eugenia |
author_facet |
Cejas, María Eugenia Dalmasso, Estefanía |
author_role |
author |
author2 |
Dalmasso, Estefanía |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Weighted Hardy spaces Singular integrals Mixed estimates Calderón–Zygmund operators Fourier multipliers |
topic |
Ciencias Exactas Weighted Hardy spaces Singular integrals Mixed estimates Calderón–Zygmund operators Fourier multipliers |
dc.description.none.fl_txt_mv |
In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces H<sup>p</sup><sub>w</sub>, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A<sub>∞</sub> class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the H<sup>p</sup><sub>w</sub>-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound A<sub>q</sub>–A<sub>∞</sub> result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993). Facultad de Ciencias Exactas |
description |
In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces H<sup>p</sup><sub>w</sub>, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A<sub>∞</sub> class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the H<sup>p</sup><sub>w</sub>-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound A<sub>q</sub>–A<sub>∞</sub> result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/131013 |
url |
http://sedici.unlp.edu.ar/handle/10915/131013 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1139-1138 info:eu-repo/semantics/altIdentifier/issn/1988-2807 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13163-019-00331-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 745-766 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904474170949632 |
score |
12.993085 |