From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement

Autores
Agora, Elona; Antezana, Jorge Abel; Baena Miret, Sergi; Carro, María J.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We shall prove pointwise estimates for the decreasing rearrangement of Tf, where T covers a wide range of interesting operators in Harmonic Analysis such as operators satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, rough operators, sparse operators, Fourier multipliers, etc. In particular, our main estimate is of the form (Tf)∗(t)≤C(1/t ∫ t0 f∗(s)ds+∫∞t(1+log s/t)−1 φ(1+log s/t) f∗(s)ds/s), where φ is determined by the Muckenhoupt Ap-weight norm behaviour of the operator.
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Baena Miret, Sergi. Universidad de Barcelona; España
Fil: Carro, María J.. Universidad Complutense de Madrid; España
Materia
BOCHNER-RIESZ OPERATOR
CALDERON TYPE OPERATORS
DECREASING REARRANGEMENT
FEFFERMAN STEIN INEQUALITY
FOURIER MULTIPLIERS
ROUGH OPERATORS
SPARSE OPERATORS
WEIGHTED LORENTZ SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/251592

id CONICETDig_810862a16f873f6386a8e814da4b3d8e
oai_identifier_str oai:ri.conicet.gov.ar:11336/251592
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From weak-type weighted inequality to pointwise estimate for the decreasing rearrangementAgora, ElonaAntezana, Jorge AbelBaena Miret, SergiCarro, María J.BOCHNER-RIESZ OPERATORCALDERON TYPE OPERATORSDECREASING REARRANGEMENTFEFFERMAN STEIN INEQUALITYFOURIER MULTIPLIERSROUGH OPERATORSSPARSE OPERATORSWEIGHTED LORENTZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We shall prove pointwise estimates for the decreasing rearrangement of Tf, where T covers a wide range of interesting operators in Harmonic Analysis such as operators satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, rough operators, sparse operators, Fourier multipliers, etc. In particular, our main estimate is of the form (Tf)∗(t)≤C(1/t ∫ t0 f∗(s)ds+∫∞t(1+log s/t)−1 φ(1+log s/t) f∗(s)ds/s), where φ is determined by the Muckenhoupt Ap-weight norm behaviour of the operator.Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Baena Miret, Sergi. Universidad de Barcelona; EspañaFil: Carro, María J.. Universidad Complutense de Madrid; EspañaSpringer2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251592Agora, Elona; Antezana, Jorge Abel; Baena Miret, Sergi; Carro, María J.; From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement; Springer; The Journal Of Geometric Analysis; 32; 56; 1-2022; 1-231050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-021-00799-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-021-00799-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2402.05323info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:47Zoai:ri.conicet.gov.ar:11336/251592instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:47.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
title From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
spellingShingle From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
Agora, Elona
BOCHNER-RIESZ OPERATOR
CALDERON TYPE OPERATORS
DECREASING REARRANGEMENT
FEFFERMAN STEIN INEQUALITY
FOURIER MULTIPLIERS
ROUGH OPERATORS
SPARSE OPERATORS
WEIGHTED LORENTZ SPACES
title_short From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
title_full From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
title_fullStr From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
title_full_unstemmed From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
title_sort From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement
dc.creator.none.fl_str_mv Agora, Elona
Antezana, Jorge Abel
Baena Miret, Sergi
Carro, María J.
author Agora, Elona
author_facet Agora, Elona
Antezana, Jorge Abel
Baena Miret, Sergi
Carro, María J.
author_role author
author2 Antezana, Jorge Abel
Baena Miret, Sergi
Carro, María J.
author2_role author
author
author
dc.subject.none.fl_str_mv BOCHNER-RIESZ OPERATOR
CALDERON TYPE OPERATORS
DECREASING REARRANGEMENT
FEFFERMAN STEIN INEQUALITY
FOURIER MULTIPLIERS
ROUGH OPERATORS
SPARSE OPERATORS
WEIGHTED LORENTZ SPACES
topic BOCHNER-RIESZ OPERATOR
CALDERON TYPE OPERATORS
DECREASING REARRANGEMENT
FEFFERMAN STEIN INEQUALITY
FOURIER MULTIPLIERS
ROUGH OPERATORS
SPARSE OPERATORS
WEIGHTED LORENTZ SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We shall prove pointwise estimates for the decreasing rearrangement of Tf, where T covers a wide range of interesting operators in Harmonic Analysis such as operators satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, rough operators, sparse operators, Fourier multipliers, etc. In particular, our main estimate is of the form (Tf)∗(t)≤C(1/t ∫ t0 f∗(s)ds+∫∞t(1+log s/t)−1 φ(1+log s/t) f∗(s)ds/s), where φ is determined by the Muckenhoupt Ap-weight norm behaviour of the operator.
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Baena Miret, Sergi. Universidad de Barcelona; España
Fil: Carro, María J.. Universidad Complutense de Madrid; España
description We shall prove pointwise estimates for the decreasing rearrangement of Tf, where T covers a wide range of interesting operators in Harmonic Analysis such as operators satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, rough operators, sparse operators, Fourier multipliers, etc. In particular, our main estimate is of the form (Tf)∗(t)≤C(1/t ∫ t0 f∗(s)ds+∫∞t(1+log s/t)−1 φ(1+log s/t) f∗(s)ds/s), where φ is determined by the Muckenhoupt Ap-weight norm behaviour of the operator.
publishDate 2022
dc.date.none.fl_str_mv 2022-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/251592
Agora, Elona; Antezana, Jorge Abel; Baena Miret, Sergi; Carro, María J.; From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement; Springer; The Journal Of Geometric Analysis; 32; 56; 1-2022; 1-23
1050-6926
CONICET Digital
CONICET
url http://hdl.handle.net/11336/251592
identifier_str_mv Agora, Elona; Antezana, Jorge Abel; Baena Miret, Sergi; Carro, María J.; From weak-type weighted inequality to pointwise estimate for the decreasing rearrangement; Springer; The Journal Of Geometric Analysis; 32; 56; 1-2022; 1-23
1050-6926
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-021-00799-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-021-00799-7
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2402.05323
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979905089830912
score 12.48226