Quantifiers for randomness of chaotic pseudo random number generators
- Autores
- De Micco, L.; Larrondo, Hilda A.; Plastino, Ángel Ricardo; Rosso, Osvaldo A.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.
Instituto de Física La Plata - Materia
-
Física
Random number
Statistical complexity
Recurrence plots
Rate entropy
Excess entropy
Permutation entropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/127088
Ver los metadatos del registro completo
id |
SEDICI_f4c2da78c3133dda38fabaf1ec66ff32 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/127088 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantifiers for randomness of chaotic pseudo random number generatorsDe Micco, L.Larrondo, Hilda A.Plastino, Ángel RicardoRosso, Osvaldo A.FísicaRandom numberStatistical complexityRecurrence plotsRate entropyExcess entropyPermutation entropyWe deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.Instituto de Física La Plata2009-08-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf3281-3296http://sedici.unlp.edu.ar/handle/10915/127088enginfo:eu-repo/semantics/altIdentifier/issn/1364-503Xinfo:eu-repo/semantics/altIdentifier/arxiv/0812.2250info:eu-repo/semantics/altIdentifier/pmid/19620124info:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2009.0075info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:42Zoai:sedici.unlp.edu.ar:10915/127088Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:43.069SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantifiers for randomness of chaotic pseudo random number generators |
title |
Quantifiers for randomness of chaotic pseudo random number generators |
spellingShingle |
Quantifiers for randomness of chaotic pseudo random number generators De Micco, L. Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy |
title_short |
Quantifiers for randomness of chaotic pseudo random number generators |
title_full |
Quantifiers for randomness of chaotic pseudo random number generators |
title_fullStr |
Quantifiers for randomness of chaotic pseudo random number generators |
title_full_unstemmed |
Quantifiers for randomness of chaotic pseudo random number generators |
title_sort |
Quantifiers for randomness of chaotic pseudo random number generators |
dc.creator.none.fl_str_mv |
De Micco, L. Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. |
author |
De Micco, L. |
author_facet |
De Micco, L. Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. |
author_role |
author |
author2 |
Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy |
topic |
Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy |
dc.description.none.fl_txt_mv |
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. Instituto de Física La Plata |
description |
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/127088 |
url |
http://sedici.unlp.edu.ar/handle/10915/127088 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1364-503X info:eu-repo/semantics/altIdentifier/arxiv/0812.2250 info:eu-repo/semantics/altIdentifier/pmid/19620124 info:eu-repo/semantics/altIdentifier/doi/10.1098/rsta.2009.0075 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 3281-3296 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616186826850304 |
score |
13.070432 |