Quantifiers for randomness of chaotic pseudo-random number generators
- Autores
- De Micco, L.; Larrondo, H.A.; Plastino, A.; Rosso, O.A.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.
- Fuente
- Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296
- Materia
-
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Chaotic systems
Entropy
Number theory
Time series
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Random number generation
article
nonlinear system
time
Nonlinear Dynamics
Time Factors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_1364503X_v367_n1901_p3281_DeMicco
Ver los metadatos del registro completo
id |
BDUBAFCEN_3dd3bdfd3d62aaefc1196a3980a04322 |
---|---|
oai_identifier_str |
paperaa:paper_1364503X_v367_n1901_p3281_DeMicco |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Quantifiers for randomness of chaotic pseudo-random number generatorsDe Micco, L.Larrondo, H.A.Plastino, A.Rosso, O.A.Excess entropyPermutation entropyRandom numberRate entropyRecurrence plotsStatistical complexityChaotic systemsEntropyNumber theoryTime seriesExcess entropyPermutation entropyRandom numberRate entropyRecurrence plotsStatistical complexityRandom number generationarticlenonlinear systemtimeNonlinear DynamicsTime FactorsWe deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMiccoPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_1364503X_v367_n1901_p3281_DeMiccoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.164Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Quantifiers for randomness of chaotic pseudo-random number generators |
title |
Quantifiers for randomness of chaotic pseudo-random number generators |
spellingShingle |
Quantifiers for randomness of chaotic pseudo-random number generators De Micco, L. Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Chaotic systems Entropy Number theory Time series Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Random number generation article nonlinear system time Nonlinear Dynamics Time Factors |
title_short |
Quantifiers for randomness of chaotic pseudo-random number generators |
title_full |
Quantifiers for randomness of chaotic pseudo-random number generators |
title_fullStr |
Quantifiers for randomness of chaotic pseudo-random number generators |
title_full_unstemmed |
Quantifiers for randomness of chaotic pseudo-random number generators |
title_sort |
Quantifiers for randomness of chaotic pseudo-random number generators |
dc.creator.none.fl_str_mv |
De Micco, L. Larrondo, H.A. Plastino, A. Rosso, O.A. |
author |
De Micco, L. |
author_facet |
De Micco, L. Larrondo, H.A. Plastino, A. Rosso, O.A. |
author_role |
author |
author2 |
Larrondo, H.A. Plastino, A. Rosso, O.A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Chaotic systems Entropy Number theory Time series Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Random number generation article nonlinear system time Nonlinear Dynamics Time Factors |
topic |
Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Chaotic systems Entropy Number theory Time series Excess entropy Permutation entropy Random number Rate entropy Recurrence plots Statistical complexity Random number generation article nonlinear system time Nonlinear Dynamics Time Factors |
dc.description.none.fl_txt_mv |
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society. |
description |
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMicco |
url |
http://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMicco |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618736363896832 |
score |
13.070432 |