Quantifiers for randomness of chaotic pseudo-random number generators

Autores
De Micco, L.; Larrondo, H.A.; Plastino, A.; Rosso, O.A.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.
Fuente
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296
Materia
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Chaotic systems
Entropy
Number theory
Time series
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Random number generation
article
nonlinear system
time
Nonlinear Dynamics
Time Factors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_1364503X_v367_n1901_p3281_DeMicco

id BDUBAFCEN_3dd3bdfd3d62aaefc1196a3980a04322
oai_identifier_str paperaa:paper_1364503X_v367_n1901_p3281_DeMicco
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Quantifiers for randomness of chaotic pseudo-random number generatorsDe Micco, L.Larrondo, H.A.Plastino, A.Rosso, O.A.Excess entropyPermutation entropyRandom numberRate entropyRecurrence plotsStatistical complexityChaotic systemsEntropyNumber theoryTime seriesExcess entropyPermutation entropyRandom numberRate entropyRecurrence plotsStatistical complexityRandom number generationarticlenonlinear systemtimeNonlinear DynamicsTime FactorsWe deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMiccoPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_1364503X_v367_n1901_p3281_DeMiccoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.164Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Quantifiers for randomness of chaotic pseudo-random number generators
title Quantifiers for randomness of chaotic pseudo-random number generators
spellingShingle Quantifiers for randomness of chaotic pseudo-random number generators
De Micco, L.
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Chaotic systems
Entropy
Number theory
Time series
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Random number generation
article
nonlinear system
time
Nonlinear Dynamics
Time Factors
title_short Quantifiers for randomness of chaotic pseudo-random number generators
title_full Quantifiers for randomness of chaotic pseudo-random number generators
title_fullStr Quantifiers for randomness of chaotic pseudo-random number generators
title_full_unstemmed Quantifiers for randomness of chaotic pseudo-random number generators
title_sort Quantifiers for randomness of chaotic pseudo-random number generators
dc.creator.none.fl_str_mv De Micco, L.
Larrondo, H.A.
Plastino, A.
Rosso, O.A.
author De Micco, L.
author_facet De Micco, L.
Larrondo, H.A.
Plastino, A.
Rosso, O.A.
author_role author
author2 Larrondo, H.A.
Plastino, A.
Rosso, O.A.
author2_role author
author
author
dc.subject.none.fl_str_mv Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Chaotic systems
Entropy
Number theory
Time series
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Random number generation
article
nonlinear system
time
Nonlinear Dynamics
Time Factors
topic Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Chaotic systems
Entropy
Number theory
Time series
Excess entropy
Permutation entropy
Random number
Rate entropy
Recurrence plots
Statistical complexity
Random number generation
article
nonlinear system
time
Nonlinear Dynamics
Time Factors
dc.description.none.fl_txt_mv We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.
description We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMicco
url http://hdl.handle.net/20.500.12110/paper_1364503X_v367_n1901_p3281_DeMicco
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618736363896832
score 13.070432