Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers
- Autores
- Suriano, Micaela Paula; Caram, Leonidas Facundo; Rosso, Osvaldo Anibal
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen?Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling.
Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; Argentina
Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Permutation entropy
Statistical complexity
Streamflow series
Argentine rivers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244550
Ver los metadatos del registro completo
id |
CONICETDig_e3c45726ce0ed6867f71634a22806296 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory QuantifiersSuriano, Micaela PaulaCaram, Leonidas FacundoRosso, Osvaldo AnibalPermutation entropyStatistical complexityStreamflow seriesArgentine rivershttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen?Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling.Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; ArgentinaFil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaMolecular Diversity Preservation International2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244550Suriano, Micaela Paula; Caram, Leonidas Facundo; Rosso, Osvaldo Anibal; Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 56-781099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/1/56info:eu-repo/semantics/altIdentifier/doi/10.3390/e26010056info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:01:52Zoai:ri.conicet.gov.ar:11336/244550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:01:53.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
title |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
spellingShingle |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers Suriano, Micaela Paula Permutation entropy Statistical complexity Streamflow series Argentine rivers |
title_short |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
title_full |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
title_fullStr |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
title_full_unstemmed |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
title_sort |
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers |
dc.creator.none.fl_str_mv |
Suriano, Micaela Paula Caram, Leonidas Facundo Rosso, Osvaldo Anibal |
author |
Suriano, Micaela Paula |
author_facet |
Suriano, Micaela Paula Caram, Leonidas Facundo Rosso, Osvaldo Anibal |
author_role |
author |
author2 |
Caram, Leonidas Facundo Rosso, Osvaldo Anibal |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Permutation entropy Statistical complexity Streamflow series Argentine rivers |
topic |
Permutation entropy Statistical complexity Streamflow series Argentine rivers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen?Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling. Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; Argentina Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen?Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244550 Suriano, Micaela Paula; Caram, Leonidas Facundo; Rosso, Osvaldo Anibal; Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 56-78 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244550 |
identifier_str_mv |
Suriano, Micaela Paula; Caram, Leonidas Facundo; Rosso, Osvaldo Anibal; Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers; Molecular Diversity Preservation International; Entropy; 26; 1; 1-2024; 56-78 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/26/1/56 info:eu-repo/semantics/altIdentifier/doi/10.3390/e26010056 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083159873028096 |
score |
13.22299 |