Characterization of autoregressive processes using entropic quantifiers
- Autores
- Traversaro Varela, Francisco; Redelico, Francisco Oscar
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Hospital Italiano; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina - Materia
-
PERMUTATION ENTROPY
TIME SERIES ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93004
Ver los metadatos del registro completo
id |
CONICETDig_6a7f4df1be1a1e83367aa2a55be5a2b5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93004 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization of autoregressive processes using entropic quantifiersTraversaro Varela, FranciscoRedelico, Francisco OscarPERMUTATION ENTROPYTIME SERIES ANALYSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Hospital Italiano; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaElsevier Science2018-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93004Traversaro Varela, Francisco; Redelico, Francisco Oscar; Characterization of autoregressive processes using entropic quantifiers; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 490; 15-1-2018; 13-230378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378437117307136info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.07.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:49Zoai:ri.conicet.gov.ar:11336/93004instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:49.849CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization of autoregressive processes using entropic quantifiers |
title |
Characterization of autoregressive processes using entropic quantifiers |
spellingShingle |
Characterization of autoregressive processes using entropic quantifiers Traversaro Varela, Francisco PERMUTATION ENTROPY TIME SERIES ANALYSIS |
title_short |
Characterization of autoregressive processes using entropic quantifiers |
title_full |
Characterization of autoregressive processes using entropic quantifiers |
title_fullStr |
Characterization of autoregressive processes using entropic quantifiers |
title_full_unstemmed |
Characterization of autoregressive processes using entropic quantifiers |
title_sort |
Characterization of autoregressive processes using entropic quantifiers |
dc.creator.none.fl_str_mv |
Traversaro Varela, Francisco Redelico, Francisco Oscar |
author |
Traversaro Varela, Francisco |
author_facet |
Traversaro Varela, Francisco Redelico, Francisco Oscar |
author_role |
author |
author2 |
Redelico, Francisco Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
PERMUTATION ENTROPY TIME SERIES ANALYSIS |
topic |
PERMUTATION ENTROPY TIME SERIES ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets. Fil: Traversaro Varela, Francisco. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Redelico, Francisco Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Hospital Italiano; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina |
description |
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93004 Traversaro Varela, Francisco; Redelico, Francisco Oscar; Characterization of autoregressive processes using entropic quantifiers; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 490; 15-1-2018; 13-23 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93004 |
identifier_str_mv |
Traversaro Varela, Francisco; Redelico, Francisco Oscar; Characterization of autoregressive processes using entropic quantifiers; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 490; 15-1-2018; 13-23 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378437117307136 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2017.07.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268755686588416 |
score |
12.885934 |