Some properties of frames of subspaces obtained by operator theory methods
- Autores
- Ruiz, Mariano Andrés; Stojanoff, Demetrio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.
Facultad de Ciencias Exactas - Materia
-
Matemática
Frames
Frames of subspaces
Fusion frames
Hilbert space operators
Oblique projections - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84315
Ver los metadatos del registro completo
id |
SEDICI_f329c9b97e9b775d895a3c7950069f63 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84315 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Some properties of frames of subspaces obtained by operator theory methodsRuiz, Mariano AndrésStojanoff, DemetrioMatemáticaFramesFrames of subspacesFusion framesHilbert space operatorsOblique projectionsWe study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.Facultad de Ciencias Exactas2008-01-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf366-378http://sedici.unlp.edu.ar/handle/10915/84315enginfo:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:11Zoai:sedici.unlp.edu.ar:10915/84315Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:11.472SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Some properties of frames of subspaces obtained by operator theory methods |
title |
Some properties of frames of subspaces obtained by operator theory methods |
spellingShingle |
Some properties of frames of subspaces obtained by operator theory methods Ruiz, Mariano Andrés Matemática Frames Frames of subspaces Fusion frames Hilbert space operators Oblique projections |
title_short |
Some properties of frames of subspaces obtained by operator theory methods |
title_full |
Some properties of frames of subspaces obtained by operator theory methods |
title_fullStr |
Some properties of frames of subspaces obtained by operator theory methods |
title_full_unstemmed |
Some properties of frames of subspaces obtained by operator theory methods |
title_sort |
Some properties of frames of subspaces obtained by operator theory methods |
dc.creator.none.fl_str_mv |
Ruiz, Mariano Andrés Stojanoff, Demetrio |
author |
Ruiz, Mariano Andrés |
author_facet |
Ruiz, Mariano Andrés Stojanoff, Demetrio |
author_role |
author |
author2 |
Stojanoff, Demetrio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática Frames Frames of subspaces Fusion frames Hilbert space operators Oblique projections |
topic |
Matemática Frames Frames of subspaces Fusion frames Hilbert space operators Oblique projections |
dc.description.none.fl_txt_mv |
We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given. Facultad de Ciencias Exactas |
description |
We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84315 |
url |
http://sedici.unlp.edu.ar/handle/10915/84315 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0022-247X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 366-378 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616034498117632 |
score |
13.070432 |