Some properties of frames of subspaces obtained by operator theory methods

Autores
Ruiz, Mariano Andrés; Stojanoff, Demetrio
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.
Facultad de Ciencias Exactas
Materia
Matemática
Frames
Frames of subspaces
Fusion frames
Hilbert space operators
Oblique projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84315

id SEDICI_f329c9b97e9b775d895a3c7950069f63
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84315
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Some properties of frames of subspaces obtained by operator theory methodsRuiz, Mariano AndrésStojanoff, DemetrioMatemáticaFramesFrames of subspacesFusion framesHilbert space operatorsOblique projectionsWe study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.Facultad de Ciencias Exactas2008-01-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf366-378http://sedici.unlp.edu.ar/handle/10915/84315enginfo:eu-repo/semantics/altIdentifier/issn/0022-247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:11Zoai:sedici.unlp.edu.ar:10915/84315Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:11.472SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Some properties of frames of subspaces obtained by operator theory methods
title Some properties of frames of subspaces obtained by operator theory methods
spellingShingle Some properties of frames of subspaces obtained by operator theory methods
Ruiz, Mariano Andrés
Matemática
Frames
Frames of subspaces
Fusion frames
Hilbert space operators
Oblique projections
title_short Some properties of frames of subspaces obtained by operator theory methods
title_full Some properties of frames of subspaces obtained by operator theory methods
title_fullStr Some properties of frames of subspaces obtained by operator theory methods
title_full_unstemmed Some properties of frames of subspaces obtained by operator theory methods
title_sort Some properties of frames of subspaces obtained by operator theory methods
dc.creator.none.fl_str_mv Ruiz, Mariano Andrés
Stojanoff, Demetrio
author Ruiz, Mariano Andrés
author_facet Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_role author
author2 Stojanoff, Demetrio
author2_role author
dc.subject.none.fl_str_mv Matemática
Frames
Frames of subspaces
Fusion frames
Hilbert space operators
Oblique projections
topic Matemática
Frames
Frames of subspaces
Fusion frames
Hilbert space operators
Oblique projections
dc.description.none.fl_txt_mv We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.
Facultad de Ciencias Exactas
description We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84315
url http://sedici.unlp.edu.ar/handle/10915/84315
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022-247X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
366-378
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616034498117632
score 13.070432