Some properties of frames of subspaces obtained by operator theory methods
- Autores
- Ruiz, Mariano Andres; Stojanoff, Demetrio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
FRAMES
FRAMES OF SUBSPACES
FUSION FRAMES
HILBERT SPACE OPERATORS
OBLIQUE PROJECTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93026
Ver los metadatos del registro completo
id |
CONICETDig_92a8ce5adccfee005a05d8f1b035b51e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93026 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some properties of frames of subspaces obtained by operator theory methodsRuiz, Mariano AndresStojanoff, DemetrioFRAMESFRAMES OF SUBSPACESFUSION FRAMESHILBERT SPACE OPERATORSOBLIQUE PROJECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given.Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2008-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93026Ruiz, Mariano Andres; Stojanoff, Demetrio; Some properties of frames of subspaces obtained by operator theory methods; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 343; 1; 1-7-2008; 366-3780022-247X1096-0813CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X08000826info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:31Zoai:ri.conicet.gov.ar:11336/93026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:31.488CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some properties of frames of subspaces obtained by operator theory methods |
title |
Some properties of frames of subspaces obtained by operator theory methods |
spellingShingle |
Some properties of frames of subspaces obtained by operator theory methods Ruiz, Mariano Andres FRAMES FRAMES OF SUBSPACES FUSION FRAMES HILBERT SPACE OPERATORS OBLIQUE PROJECTIONS |
title_short |
Some properties of frames of subspaces obtained by operator theory methods |
title_full |
Some properties of frames of subspaces obtained by operator theory methods |
title_fullStr |
Some properties of frames of subspaces obtained by operator theory methods |
title_full_unstemmed |
Some properties of frames of subspaces obtained by operator theory methods |
title_sort |
Some properties of frames of subspaces obtained by operator theory methods |
dc.creator.none.fl_str_mv |
Ruiz, Mariano Andres Stojanoff, Demetrio |
author |
Ruiz, Mariano Andres |
author_facet |
Ruiz, Mariano Andres Stojanoff, Demetrio |
author_role |
author |
author2 |
Stojanoff, Demetrio |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRAMES FRAMES OF SUBSPACES FUSION FRAMES HILBERT SPACE OPERATORS OBLIQUE PROJECTIONS |
topic |
FRAMES FRAMES OF SUBSPACES FUSION FRAMES HILBERT SPACE OPERATORS OBLIQUE PROJECTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given. Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
We study the relationship among operators, orthonormal basis of subspaces and frames of subspaces (also called fusion frames) for a separable Hilbert space H. We get sufficient conditions on an orthonormal basis of subspaces E = {Ei}i ∈ I of a Hilbert space K and a surjective T ∈ L (K, H) in order that {T (Ei)}i ∈ I is a frame of subspaces with respect to a computable sequence of weights. We also obtain generalizations of results in [J.A. Antezana, G. Corach, M. Ruiz, D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc. 134 (2006) 1031-1037], which relate frames of subspaces (including the computation of their weights) and oblique projections. The notion of refinement of a fusion frame is defined and used to obtain results about the excess of such frames. We study the set of admissible weights for a generating sequence of subspaces. Several examples are given. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-07-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93026 Ruiz, Mariano Andres; Stojanoff, Demetrio; Some properties of frames of subspaces obtained by operator theory methods; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 343; 1; 1-7-2008; 366-378 0022-247X 1096-0813 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93026 |
identifier_str_mv |
Ruiz, Mariano Andres; Stojanoff, Demetrio; Some properties of frames of subspaces obtained by operator theory methods; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 343; 1; 1-7-2008; 366-378 0022-247X 1096-0813 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2008.01.062 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X08000826 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613217461993472 |
score |
13.070432 |