Properties of finite dual fusion frames
- Autores
- Heineken, Sigrid Bettina; Morillas, Patricia Mariela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new notion of dual fusion frame has been recently introduced by the authors. In this article that notion is further motivated and it is shown that it is suitable to deal with questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that this concept of duality solves the question about an appropriate definition of dual fusion frames. It is shown that for overcomplete fusion frames there always exist duals different from the canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual fusion frame systems with dual frames and dual projective reconstruction systems is established. Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are determined. Examples that illustrate the obtained results are exhibited.
Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
Frames
Fusion Frames
Dual Fusion Frames
Optimal Dual Fusion Frames - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31295
Ver los metadatos del registro completo
id |
CONICETDig_79ce3e93dd41b78ee72e442a1752ae06 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31295 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Properties of finite dual fusion framesHeineken, Sigrid BettinaMorillas, Patricia MarielaFramesFusion FramesDual Fusion FramesOptimal Dual Fusion Frameshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new notion of dual fusion frame has been recently introduced by the authors. In this article that notion is further motivated and it is shown that it is suitable to deal with questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that this concept of duality solves the question about an appropriate definition of dual fusion frames. It is shown that for overcomplete fusion frames there always exist duals different from the canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual fusion frame systems with dual frames and dual projective reconstruction systems is established. Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are determined. Examples that illustrate the obtained results are exhibited.Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaElsevier2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31295Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Properties of finite dual fusion frames; Elsevier; Linear Algebra and its Applications; 453; 7-2014; 1-270024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.07724info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379514002225info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.04.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:10Zoai:ri.conicet.gov.ar:11336/31295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:11.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Properties of finite dual fusion frames |
title |
Properties of finite dual fusion frames |
spellingShingle |
Properties of finite dual fusion frames Heineken, Sigrid Bettina Frames Fusion Frames Dual Fusion Frames Optimal Dual Fusion Frames |
title_short |
Properties of finite dual fusion frames |
title_full |
Properties of finite dual fusion frames |
title_fullStr |
Properties of finite dual fusion frames |
title_full_unstemmed |
Properties of finite dual fusion frames |
title_sort |
Properties of finite dual fusion frames |
dc.creator.none.fl_str_mv |
Heineken, Sigrid Bettina Morillas, Patricia Mariela |
author |
Heineken, Sigrid Bettina |
author_facet |
Heineken, Sigrid Bettina Morillas, Patricia Mariela |
author_role |
author |
author2 |
Morillas, Patricia Mariela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Frames Fusion Frames Dual Fusion Frames Optimal Dual Fusion Frames |
topic |
Frames Fusion Frames Dual Fusion Frames Optimal Dual Fusion Frames |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new notion of dual fusion frame has been recently introduced by the authors. In this article that notion is further motivated and it is shown that it is suitable to deal with questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that this concept of duality solves the question about an appropriate definition of dual fusion frames. It is shown that for overcomplete fusion frames there always exist duals different from the canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual fusion frame systems with dual frames and dual projective reconstruction systems is established. Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are determined. Examples that illustrate the obtained results are exhibited. Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
A new notion of dual fusion frame has been recently introduced by the authors. In this article that notion is further motivated and it is shown that it is suitable to deal with questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that this concept of duality solves the question about an appropriate definition of dual fusion frames. It is shown that for overcomplete fusion frames there always exist duals different from the canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual fusion frame systems with dual frames and dual projective reconstruction systems is established. Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are determined. Examples that illustrate the obtained results are exhibited. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31295 Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Properties of finite dual fusion frames; Elsevier; Linear Algebra and its Applications; 453; 7-2014; 1-27 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31295 |
identifier_str_mv |
Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Properties of finite dual fusion frames; Elsevier; Linear Algebra and its Applications; 453; 7-2014; 1-27 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.07724 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379514002225 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.04.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269389205798912 |
score |
13.13397 |