Dynamic bayesian networks for rainfall forecasting

Autores
Gutiérrez Llorente, José Manuel; Cano, R.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.
Eje: Informática teórica
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Learning
informática
Weather forecasting
downscaling
expert systems
probabilistic networks
temporal modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23299

id SEDICI_e7ab63b506f09c7f436b2e8c16eb899d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23299
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamic bayesian networks for rainfall forecastingGutiérrez Llorente, José ManuelCano, R.Ciencias InformáticasLearninginformáticaWeather forecastingdownscalingexpert systemsprobabilistic networkstemporal modelingIn this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.Eje: Informática teóricaRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23299enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:55Zoai:sedici.unlp.edu.ar:10915/23299Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:56.219SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamic bayesian networks for rainfall forecasting
title Dynamic bayesian networks for rainfall forecasting
spellingShingle Dynamic bayesian networks for rainfall forecasting
Gutiérrez Llorente, José Manuel
Ciencias Informáticas
Learning
informática
Weather forecasting
downscaling
expert systems
probabilistic networks
temporal modeling
title_short Dynamic bayesian networks for rainfall forecasting
title_full Dynamic bayesian networks for rainfall forecasting
title_fullStr Dynamic bayesian networks for rainfall forecasting
title_full_unstemmed Dynamic bayesian networks for rainfall forecasting
title_sort Dynamic bayesian networks for rainfall forecasting
dc.creator.none.fl_str_mv Gutiérrez Llorente, José Manuel
Cano, R.
author Gutiérrez Llorente, José Manuel
author_facet Gutiérrez Llorente, José Manuel
Cano, R.
author_role author
author2 Cano, R.
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Learning
informática
Weather forecasting
downscaling
expert systems
probabilistic networks
temporal modeling
topic Ciencias Informáticas
Learning
informática
Weather forecasting
downscaling
expert systems
probabilistic networks
temporal modeling
dc.description.none.fl_txt_mv In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.
Eje: Informática teórica
Red de Universidades con Carreras en Informática (RedUNCI)
description In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23299
url http://sedici.unlp.edu.ar/handle/10915/23299
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782828548718592
score 12.718478