Dynamic bayesian networks for rainfall forecasting
- Autores
- Gutiérrez Llorente, José Manuel; Cano, R.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.
Eje: Informática teórica
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Learning
informática
Weather forecasting
downscaling
expert systems
probabilistic networks
temporal modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23299
Ver los metadatos del registro completo
id |
SEDICI_e7ab63b506f09c7f436b2e8c16eb899d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23299 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Dynamic bayesian networks for rainfall forecastingGutiérrez Llorente, José ManuelCano, R.Ciencias InformáticasLearninginformáticaWeather forecastingdownscalingexpert systemsprobabilistic networkstemporal modelingIn this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest.Eje: Informática teóricaRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23299enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:55Zoai:sedici.unlp.edu.ar:10915/23299Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:56.219SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Dynamic bayesian networks for rainfall forecasting |
title |
Dynamic bayesian networks for rainfall forecasting |
spellingShingle |
Dynamic bayesian networks for rainfall forecasting Gutiérrez Llorente, José Manuel Ciencias Informáticas Learning informática Weather forecasting downscaling expert systems probabilistic networks temporal modeling |
title_short |
Dynamic bayesian networks for rainfall forecasting |
title_full |
Dynamic bayesian networks for rainfall forecasting |
title_fullStr |
Dynamic bayesian networks for rainfall forecasting |
title_full_unstemmed |
Dynamic bayesian networks for rainfall forecasting |
title_sort |
Dynamic bayesian networks for rainfall forecasting |
dc.creator.none.fl_str_mv |
Gutiérrez Llorente, José Manuel Cano, R. |
author |
Gutiérrez Llorente, José Manuel |
author_facet |
Gutiérrez Llorente, José Manuel Cano, R. |
author_role |
author |
author2 |
Cano, R. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Learning informática Weather forecasting downscaling expert systems probabilistic networks temporal modeling |
topic |
Ciencias Informáticas Learning informática Weather forecasting downscaling expert systems probabilistic networks temporal modeling |
dc.description.none.fl_txt_mv |
In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest. Eje: Informática teórica Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this paper we deal with the problem of forecasting local rainfall at multiple meteorological stations over the Iberian peninsula. To this aim a dynamic Bayesian network is introduced for relating rainfall to broad-scale atmospheric circulation patterns. In this way statistical historic information gathered at the available stations is combined with numerical atmospheric predictions developed at different weather services, resulting a single consensus prediction. This technique can be considered an hybrid statistical-numerical method for precipitation downscaling (predicting local values based on broad-scale grided predictions), and can be easily adapted to other meteorological variables of interest. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23299 |
url |
http://sedici.unlp.edu.ar/handle/10915/23299 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846782828548718592 |
score |
12.718478 |