WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
- Autores
- Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Nogués Peagle, Julia. University of Utah; Estados Unidos - Materia
-
Weather Forecasting
Wrf
Ensemble Forecasting - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17378
Ver los metadatos del registro completo
id |
CONICETDig_49a7b49050e6260d42d15ccc70289b9b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17378 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variablesRuiz, Juan JoseSaulo, Andrea CelesteNogués Peagle, JuliaWeather ForecastingWrfEnsemble Forecastinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Nogués Peagle, Julia. University of Utah; Estados UnidosAmerican Meteorological Society2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17378Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-33550027-0644enginfo:eu-repo/semantics/altIdentifier/doi/10.1175/2010MWR3358.1info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3358.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:14Zoai:ri.conicet.gov.ar:11336/17378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:14.664CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
title |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
spellingShingle |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables Ruiz, Juan Jose Weather Forecasting Wrf Ensemble Forecasting |
title_short |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
title_full |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
title_fullStr |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
title_full_unstemmed |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
title_sort |
WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables |
dc.creator.none.fl_str_mv |
Ruiz, Juan Jose Saulo, Andrea Celeste Nogués Peagle, Julia |
author |
Ruiz, Juan Jose |
author_facet |
Ruiz, Juan Jose Saulo, Andrea Celeste Nogués Peagle, Julia |
author_role |
author |
author2 |
Saulo, Andrea Celeste Nogués Peagle, Julia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Weather Forecasting Wrf Ensemble Forecasting |
topic |
Weather Forecasting Wrf Ensemble Forecasting |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models. Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina Fil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina Fil: Nogués Peagle, Julia. University of Utah; Estados Unidos |
description |
The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17378 Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-3355 0027-0644 |
url |
http://hdl.handle.net/11336/17378 |
identifier_str_mv |
Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-3355 0027-0644 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1175/2010MWR3358.1 info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3358.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Meteorological Society |
publisher.none.fl_str_mv |
American Meteorological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269745747853312 |
score |
13.13397 |