WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables

Autores
Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Nogués Peagle, Julia. University of Utah; Estados Unidos
Materia
Weather Forecasting
Wrf
Ensemble Forecasting
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17378

id CONICETDig_49a7b49050e6260d42d15ccc70289b9b
oai_identifier_str oai:ri.conicet.gov.ar:11336/17378
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variablesRuiz, Juan JoseSaulo, Andrea CelesteNogués Peagle, JuliaWeather ForecastingWrfEnsemble Forecastinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Nogués Peagle, Julia. University of Utah; Estados UnidosAmerican Meteorological Society2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17378Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-33550027-0644enginfo:eu-repo/semantics/altIdentifier/doi/10.1175/2010MWR3358.1info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3358.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:14Zoai:ri.conicet.gov.ar:11336/17378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:14.664CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
title WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
spellingShingle WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
Ruiz, Juan Jose
Weather Forecasting
Wrf
Ensemble Forecasting
title_short WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
title_full WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
title_fullStr WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
title_full_unstemmed WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
title_sort WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables
dc.creator.none.fl_str_mv Ruiz, Juan Jose
Saulo, Andrea Celeste
Nogués Peagle, Julia
author Ruiz, Juan Jose
author_facet Ruiz, Juan Jose
Saulo, Andrea Celeste
Nogués Peagle, Julia
author_role author
author2 Saulo, Andrea Celeste
Nogués Peagle, Julia
author2_role author
author
dc.subject.none.fl_str_mv Weather Forecasting
Wrf
Ensemble Forecasting
topic Weather Forecasting
Wrf
Ensemble Forecasting
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Saulo, Andrea Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Nogués Peagle, Julia. University of Utah; Estados Unidos
description The Weather and Research Forecast model is tested over South America in different configurations to identify the one that gives the best estimates of observed surface variables. Systematic, nonsystematic, and total errors are computed for 48-h forecasts initialized with the NCEP Global Data Assimilation System (GDAS). There is no unique model design that best fits all variables over the whole domain, and nonsystematic errors for all configurations differ little from one another; such differences are in most cases smaller than the observed day-to-day variability. An ensemble mean consisting of runs with different parameterizations gives the best skill for the whole domain. Surface variables are highly sensitive to the choice of land surface models. Surface temperature is well represented by the Noah land model, but dewpoint temperature is best estimated by the simplest land surface model considered here, which specifies soil moisture based on climatology. This underlines the need for better understanding of humid processes at the subgrid scale. Surface wind errors decrease the intensity of the low-level jet, reducing expected heat and moisture advection over southeast South America (SESA), with negative precipitation errors over SESA and positive biases over the South Atlantic convergence zone (SACZ). This pattern of errors suggests feedbacks between wind errors, precipitation, and surface processes as follows: an increase of precipitation over the SACZ produces compensating descent in SESA, with more stable stratification, less rain, less soil moisture, and decreased rain. This is a clear example of how local errors are related to regional circulation, and suggests that improvement of model performance requires not only better parameterizations at the subgrid scales, but also improved regional models.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17378
Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-3355
0027-0644
url http://hdl.handle.net/11336/17378
identifier_str_mv Ruiz, Juan Jose; Saulo, Andrea Celeste; Nogués Peagle, Julia; WRF Model Sensitivity to Choice of Parameterization over South America: validation against surface variables; American Meteorological Society; Monthly Energy Review; 138; 8; 8-2010; 3342-3355
0027-0644
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1175/2010MWR3358.1
info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3358.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269745747853312
score 13.13397