High roughness time series forecasting based on energy associated of series
- Autores
- Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting.
Fil: Rodriguez Rivero, Cristian Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Pucheta, Julián Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Baumgartner, Josef Sylvester. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Patiño, Héctor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Sauchelli, Victor Hugo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina - Materia
-
TIME SERIES
FORECASTING
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196019
Ver los metadatos del registro completo
id |
CONICETDig_4502538849cc587b6e7b0993abfc5802 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196019 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
High roughness time series forecasting based on energy associated of seriesRodriguez Rivero, Cristian MaximilianoPucheta, Julián AntonioBaumgartner, Josef SylvesterPatiño, Héctor DanielSauchelli, Victor HugoTIME SERIESFORECASTINGNEURAL NETWORKShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting.Fil: Rodriguez Rivero, Cristian Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Pucheta, Julián Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Baumgartner, Josef Sylvester. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Patiño, Héctor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Sauchelli, Victor Hugo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaDavid Publishing Company2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196019Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo; High roughness time series forecasting based on energy associated of series; David Publishing Company; Journal of Communication and Computer; 5; 9; 5-2012; 576-5861548-7709CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.davidpublisher.com/index.php/Home/Journal/detail?journalid=16&jx=jcc&cont=allissuesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:10Zoai:ri.conicet.gov.ar:11336/196019instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:11.484CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
High roughness time series forecasting based on energy associated of series |
title |
High roughness time series forecasting based on energy associated of series |
spellingShingle |
High roughness time series forecasting based on energy associated of series Rodriguez Rivero, Cristian Maximiliano TIME SERIES FORECASTING NEURAL NETWORKS |
title_short |
High roughness time series forecasting based on energy associated of series |
title_full |
High roughness time series forecasting based on energy associated of series |
title_fullStr |
High roughness time series forecasting based on energy associated of series |
title_full_unstemmed |
High roughness time series forecasting based on energy associated of series |
title_sort |
High roughness time series forecasting based on energy associated of series |
dc.creator.none.fl_str_mv |
Rodriguez Rivero, Cristian Maximiliano Pucheta, Julián Antonio Baumgartner, Josef Sylvester Patiño, Héctor Daniel Sauchelli, Victor Hugo |
author |
Rodriguez Rivero, Cristian Maximiliano |
author_facet |
Rodriguez Rivero, Cristian Maximiliano Pucheta, Julián Antonio Baumgartner, Josef Sylvester Patiño, Héctor Daniel Sauchelli, Victor Hugo |
author_role |
author |
author2 |
Pucheta, Julián Antonio Baumgartner, Josef Sylvester Patiño, Héctor Daniel Sauchelli, Victor Hugo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
TIME SERIES FORECASTING NEURAL NETWORKS |
topic |
TIME SERIES FORECASTING NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting. Fil: Rodriguez Rivero, Cristian Maximiliano. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina Fil: Pucheta, Julián Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Baumgartner, Josef Sylvester. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Patiño, Héctor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Sauchelli, Victor Hugo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina |
description |
In this study, an algorithm to adjust parameters of high roughness time series based on energy associated of series using a feed-forward NN-based model is presented. The criterion for adjustment consists of building time series values from forecasted time series area and taking into account the roughness of series. These values are approximated by the NN to make a primitive calculated as an area by the predictor filter used as a new entrance. A comparison between this work and another that involves a similar approach to test time series prediction, indicates an improvement for certain sort of series. The NN filter output is intended to approximate the current value available from the series which has the same Hurst Parameter as the real time series. The proposed approach is tested over five time series obtained from samples of Mackey-Glass delay differential equations (MG). Therefore, these results show a model performance for time series forecasting and encourage to be applied for meteorological variables measurements such as soil moisture series, daily rainfall and monthly cumulative rainfall time series forecasting. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196019 Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo; High roughness time series forecasting based on energy associated of series; David Publishing Company; Journal of Communication and Computer; 5; 9; 5-2012; 576-586 1548-7709 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196019 |
identifier_str_mv |
Rodriguez Rivero, Cristian Maximiliano; Pucheta, Julián Antonio; Baumgartner, Josef Sylvester; Patiño, Héctor Daniel; Sauchelli, Victor Hugo; High roughness time series forecasting based on energy associated of series; David Publishing Company; Journal of Communication and Computer; 5; 9; 5-2012; 576-586 1548-7709 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.davidpublisher.com/index.php/Home/Journal/detail?journalid=16&jx=jcc&cont=allissues |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
David Publishing Company |
publisher.none.fl_str_mv |
David Publishing Company |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268841188524032 |
score |
13.13397 |