Dynamic bayesian networks for integrating multi-omics time series microbiome data
- Autores
- Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; Bar Joseph, Ziv; Narasimhan, Giri
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions
Fil: Ruiz Perez, Daniel. Florida International University; Estados Unidos
Fil: Lugo Martinez, Jose. University of Carnegie Mellon; Estados Unidos
Fil: Bourguignon, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos. Universidad Tecnológica Nacional; Argentina
Fil: Mathee, Kalai. Florida International University; Estados Unidos
Fil: Lerner, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados Unidos
Fil: Narasimhan, Giri. Florida International University; Estados Unidos - Materia
-
Longitudinal microbiome analysis,
Microbial composition prediction,
Dynamic Bayesian networks,
Temporal alignment
Multi-omic integration, - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155252
Ver los metadatos del registro completo
| id |
CONICETDig_7746d95cd310751203ed52f52b31250b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155252 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Dynamic bayesian networks for integrating multi-omics time series microbiome dataRuiz Perez, DanielLugo Martinez, JoseBourguignon, NataliaMathee, KalaiLerner, BetianaBar Joseph, ZivNarasimhan, GiriLongitudinal microbiome analysis,Microbial composition prediction,Dynamic Bayesian networks,Temporal alignmentMulti-omic integration,https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactionsFil: Ruiz Perez, Daniel. Florida International University; Estados UnidosFil: Lugo Martinez, Jose. University of Carnegie Mellon; Estados UnidosFil: Bourguignon, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos. Universidad Tecnológica Nacional; ArgentinaFil: Mathee, Kalai. Florida International University; Estados UnidosFil: Lerner, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados UnidosFil: Narasimhan, Giri. Florida International University; Estados UnidosAmerican Society for Microbiology2021-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155252Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-170021-91931098-5530CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1128/mSystems.01105-20info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/mSystems.01105-20info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:47:31Zoai:ri.conicet.gov.ar:11336/155252instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:47:31.941CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| title |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| spellingShingle |
Dynamic bayesian networks for integrating multi-omics time series microbiome data Ruiz Perez, Daniel Longitudinal microbiome analysis, Microbial composition prediction, Dynamic Bayesian networks, Temporal alignment Multi-omic integration, |
| title_short |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| title_full |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| title_fullStr |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| title_full_unstemmed |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| title_sort |
Dynamic bayesian networks for integrating multi-omics time series microbiome data |
| dc.creator.none.fl_str_mv |
Ruiz Perez, Daniel Lugo Martinez, Jose Bourguignon, Natalia Mathee, Kalai Lerner, Betiana Bar Joseph, Ziv Narasimhan, Giri |
| author |
Ruiz Perez, Daniel |
| author_facet |
Ruiz Perez, Daniel Lugo Martinez, Jose Bourguignon, Natalia Mathee, Kalai Lerner, Betiana Bar Joseph, Ziv Narasimhan, Giri |
| author_role |
author |
| author2 |
Lugo Martinez, Jose Bourguignon, Natalia Mathee, Kalai Lerner, Betiana Bar Joseph, Ziv Narasimhan, Giri |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Longitudinal microbiome analysis, Microbial composition prediction, Dynamic Bayesian networks, Temporal alignment Multi-omic integration, |
| topic |
Longitudinal microbiome analysis, Microbial composition prediction, Dynamic Bayesian networks, Temporal alignment Multi-omic integration, |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions Fil: Ruiz Perez, Daniel. Florida International University; Estados Unidos Fil: Lugo Martinez, Jose. University of Carnegie Mellon; Estados Unidos Fil: Bourguignon, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos. Universidad Tecnológica Nacional; Argentina Fil: Mathee, Kalai. Florida International University; Estados Unidos Fil: Lerner, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina Fil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados Unidos Fil: Narasimhan, Giri. Florida International University; Estados Unidos |
| description |
A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-03-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155252 Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-17 0021-9193 1098-5530 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/155252 |
| identifier_str_mv |
Ruiz Perez, Daniel; Lugo Martinez, Jose; Bourguignon, Natalia; Mathee, Kalai; Lerner, Betiana; et al.; Dynamic bayesian networks for integrating multi-omics time series microbiome data; American Society for Microbiology; mSystems; 6; 2; 30-3-2021; 1-17 0021-9193 1098-5530 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1128/mSystems.01105-20 info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/mSystems.01105-20 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Society for Microbiology |
| publisher.none.fl_str_mv |
American Society for Microbiology |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597953450606592 |
| score |
12.976206 |