Linking weather generators and crop models for assessment of climate forecast outcomes
- Autores
- Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).
Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos
Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Podestá, Guillermo. University of Miami; Estados Unidos
Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos - Materia
-
Climate Impacts
Seasonal Forecasting
Risk Assessment
Statistical Downscaling
Maize
Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16167
Ver los metadatos del registro completo
id |
CONICETDig_8a7b2d850d690c3c292af1464609af99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16167 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linking weather generators and crop models for assessment of climate forecast outcomesApipattanavis, SomkiatBert, Federico EstebanPodestá, GuillermoRajagopalan, BalajiClimate ImpactsSeasonal ForecastingRisk AssessmentStatistical DownscalingMaizeArgentinahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados UnidosFil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Podestá, Guillermo. University of Miami; Estados UnidosFil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados UnidosElsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16167Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-1740168-1923enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2009.09.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:37Zoai:ri.conicet.gov.ar:11336/16167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:38.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linking weather generators and crop models for assessment of climate forecast outcomes |
title |
Linking weather generators and crop models for assessment of climate forecast outcomes |
spellingShingle |
Linking weather generators and crop models for assessment of climate forecast outcomes Apipattanavis, Somkiat Climate Impacts Seasonal Forecasting Risk Assessment Statistical Downscaling Maize Argentina |
title_short |
Linking weather generators and crop models for assessment of climate forecast outcomes |
title_full |
Linking weather generators and crop models for assessment of climate forecast outcomes |
title_fullStr |
Linking weather generators and crop models for assessment of climate forecast outcomes |
title_full_unstemmed |
Linking weather generators and crop models for assessment of climate forecast outcomes |
title_sort |
Linking weather generators and crop models for assessment of climate forecast outcomes |
dc.creator.none.fl_str_mv |
Apipattanavis, Somkiat Bert, Federico Esteban Podestá, Guillermo Rajagopalan, Balaji |
author |
Apipattanavis, Somkiat |
author_facet |
Apipattanavis, Somkiat Bert, Federico Esteban Podestá, Guillermo Rajagopalan, Balaji |
author_role |
author |
author2 |
Bert, Federico Esteban Podestá, Guillermo Rajagopalan, Balaji |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Climate Impacts Seasonal Forecasting Risk Assessment Statistical Downscaling Maize Argentina |
topic |
Climate Impacts Seasonal Forecasting Risk Assessment Statistical Downscaling Maize Argentina |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location). Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Podestá, Guillermo. University of Miami; Estados Unidos Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos |
description |
Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location). |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16167 Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174 0168-1923 |
url |
http://hdl.handle.net/11336/16167 |
identifier_str_mv |
Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174 0168-1923 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2009.09.012 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270089120841728 |
score |
13.13397 |