Linking weather generators and crop models for assessment of climate forecast outcomes

Autores
Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).
Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos
Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Podestá, Guillermo. University of Miami; Estados Unidos
Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos
Materia
Climate Impacts
Seasonal Forecasting
Risk Assessment
Statistical Downscaling
Maize
Argentina
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16167

id CONICETDig_8a7b2d850d690c3c292af1464609af99
oai_identifier_str oai:ri.conicet.gov.ar:11336/16167
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Linking weather generators and crop models for assessment of climate forecast outcomesApipattanavis, SomkiatBert, Federico EstebanPodestá, GuillermoRajagopalan, BalajiClimate ImpactsSeasonal ForecastingRisk AssessmentStatistical DownscalingMaizeArgentinahttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados UnidosFil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Podestá, Guillermo. University of Miami; Estados UnidosFil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados UnidosElsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16167Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-1740168-1923enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2009.09.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:37Zoai:ri.conicet.gov.ar:11336/16167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:38.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Linking weather generators and crop models for assessment of climate forecast outcomes
title Linking weather generators and crop models for assessment of climate forecast outcomes
spellingShingle Linking weather generators and crop models for assessment of climate forecast outcomes
Apipattanavis, Somkiat
Climate Impacts
Seasonal Forecasting
Risk Assessment
Statistical Downscaling
Maize
Argentina
title_short Linking weather generators and crop models for assessment of climate forecast outcomes
title_full Linking weather generators and crop models for assessment of climate forecast outcomes
title_fullStr Linking weather generators and crop models for assessment of climate forecast outcomes
title_full_unstemmed Linking weather generators and crop models for assessment of climate forecast outcomes
title_sort Linking weather generators and crop models for assessment of climate forecast outcomes
dc.creator.none.fl_str_mv Apipattanavis, Somkiat
Bert, Federico Esteban
Podestá, Guillermo
Rajagopalan, Balaji
author Apipattanavis, Somkiat
author_facet Apipattanavis, Somkiat
Bert, Federico Esteban
Podestá, Guillermo
Rajagopalan, Balaji
author_role author
author2 Bert, Federico Esteban
Podestá, Guillermo
Rajagopalan, Balaji
author2_role author
author
author
dc.subject.none.fl_str_mv Climate Impacts
Seasonal Forecasting
Risk Assessment
Statistical Downscaling
Maize
Argentina
topic Climate Impacts
Seasonal Forecasting
Risk Assessment
Statistical Downscaling
Maize
Argentina
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).
Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos
Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Podestá, Guillermo. University of Miami; Estados Unidos
Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos
description Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16167
Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174
0168-1923
url http://hdl.handle.net/11336/16167
identifier_str_mv Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174
0168-1923
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2009.09.012
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270089120841728
score 13.13397