A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem
- Autores
- Minetti, Gabriela F.; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this preliminary study the Flow Shop Scheduling Problem (FSSP) is solved by hybrid Evolutionary Algorithms. The algorithms are obtained as a combination of an evolutionary algorithm, which uses the Multi-Inver-Over operator, and two conventional heuristics (CDS and a modified NEH) which are applied either before the evolution begins or when it ends. Here we analyze the genotype and phenotype distribution over the final population of individuals trying to establish the algorithm behavior. Although the original Evolutionary Algorithm was created to provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind of scheduling problem because they share a common chromosome representation.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
Heuristic methods
Scheduling
ARTIFICIAL INTELLIGENCE
flow shop sequencing problem
evolutionary algorithms
heuristics
CDS
NEH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23006
Ver los metadatos del registro completo
id |
SEDICI_d079d7e32f8a7f52eacbc1daa236f3a2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23006 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problemMinetti, Gabriela F.Alfonso, HugoGallard, Raúl HectorCiencias InformáticasAlgorithmsHeuristic methodsSchedulingARTIFICIAL INTELLIGENCEflow shop sequencing problemevolutionary algorithmsheuristicsCDSNEHIn this preliminary study the Flow Shop Scheduling Problem (FSSP) is solved by hybrid Evolutionary Algorithms. The algorithms are obtained as a combination of an evolutionary algorithm, which uses the Multi-Inver-Over operator, and two conventional heuristics (CDS and a modified NEH) which are applied either before the evolution begins or when it ends. Here we analyze the genotype and phenotype distribution over the final population of individuals trying to establish the algorithm behavior. Although the original Evolutionary Algorithm was created to provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind of scheduling problem because they share a common chromosome representation.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf729-738http://sedici.unlp.edu.ar/handle/10915/23006enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:52Zoai:sedici.unlp.edu.ar:10915/23006Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:52.623SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
title |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
spellingShingle |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem Minetti, Gabriela F. Ciencias Informáticas Algorithms Heuristic methods Scheduling ARTIFICIAL INTELLIGENCE flow shop sequencing problem evolutionary algorithms heuristics CDS NEH |
title_short |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
title_full |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
title_fullStr |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
title_full_unstemmed |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
title_sort |
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem |
dc.creator.none.fl_str_mv |
Minetti, Gabriela F. Alfonso, Hugo Gallard, Raúl Hector |
author |
Minetti, Gabriela F. |
author_facet |
Minetti, Gabriela F. Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms Heuristic methods Scheduling ARTIFICIAL INTELLIGENCE flow shop sequencing problem evolutionary algorithms heuristics CDS NEH |
topic |
Ciencias Informáticas Algorithms Heuristic methods Scheduling ARTIFICIAL INTELLIGENCE flow shop sequencing problem evolutionary algorithms heuristics CDS NEH |
dc.description.none.fl_txt_mv |
In this preliminary study the Flow Shop Scheduling Problem (FSSP) is solved by hybrid Evolutionary Algorithms. The algorithms are obtained as a combination of an evolutionary algorithm, which uses the Multi-Inver-Over operator, and two conventional heuristics (CDS and a modified NEH) which are applied either before the evolution begins or when it ends. Here we analyze the genotype and phenotype distribution over the final population of individuals trying to establish the algorithm behavior. Although the original Evolutionary Algorithm was created to provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind of scheduling problem because they share a common chromosome representation. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this preliminary study the Flow Shop Scheduling Problem (FSSP) is solved by hybrid Evolutionary Algorithms. The algorithms are obtained as a combination of an evolutionary algorithm, which uses the Multi-Inver-Over operator, and two conventional heuristics (CDS and a modified NEH) which are applied either before the evolution begins or when it ends. Here we analyze the genotype and phenotype distribution over the final population of individuals trying to establish the algorithm behavior. Although the original Evolutionary Algorithm was created to provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind of scheduling problem because they share a common chromosome representation. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23006 |
url |
http://sedici.unlp.edu.ar/handle/10915/23006 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 729-738 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063905880670208 |
score |
13.216834 |