Hybrid evolutionary algorithms to solve scheduling problems

Autores
Minetti, Gabriela F.; Salto, Carolina; Bermúdez, Carlos; Fernandez, Natalia; Alfonso, Hugo; Gallard, Raúl Hector
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
Scheduling
Hybrid evolutionary algorithms
scheduling problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22062

id SEDICI_7fae0338aabc2acd009c5ab2ee997351
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22062
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hybrid evolutionary algorithms to solve scheduling problemsMinetti, Gabriela F.Salto, CarolinaBermúdez, CarlosFernandez, NataliaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasARTIFICIAL INTELLIGENCEAlgorithmsSchedulingHybrid evolutionary algorithmsscheduling problemsThe choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf460-462http://sedici.unlp.edu.ar/handle/10915/22062enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:32Zoai:sedici.unlp.edu.ar:10915/22062Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:32.738SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hybrid evolutionary algorithms to solve scheduling problems
title Hybrid evolutionary algorithms to solve scheduling problems
spellingShingle Hybrid evolutionary algorithms to solve scheduling problems
Minetti, Gabriela F.
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
Scheduling
Hybrid evolutionary algorithms
scheduling problems
title_short Hybrid evolutionary algorithms to solve scheduling problems
title_full Hybrid evolutionary algorithms to solve scheduling problems
title_fullStr Hybrid evolutionary algorithms to solve scheduling problems
title_full_unstemmed Hybrid evolutionary algorithms to solve scheduling problems
title_sort Hybrid evolutionary algorithms to solve scheduling problems
dc.creator.none.fl_str_mv Minetti, Gabriela F.
Salto, Carolina
Bermúdez, Carlos
Fernandez, Natalia
Alfonso, Hugo
Gallard, Raúl Hector
author Minetti, Gabriela F.
author_facet Minetti, Gabriela F.
Salto, Carolina
Bermúdez, Carlos
Fernandez, Natalia
Alfonso, Hugo
Gallard, Raúl Hector
author_role author
author2 Salto, Carolina
Bermúdez, Carlos
Fernandez, Natalia
Alfonso, Hugo
Gallard, Raúl Hector
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
Scheduling
Hybrid evolutionary algorithms
scheduling problems
topic Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
Scheduling
Hybrid evolutionary algorithms
scheduling problems
dc.description.none.fl_txt_mv The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.
publishDate 2002
dc.date.none.fl_str_mv 2002-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22062
url http://sedici.unlp.edu.ar/handle/10915/22062
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
460-462
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063901314121728
score 13.221938