Hybrid evolutionary algorithms to solve scheduling problems
- Autores
- Minetti, Gabriela F.; Salto, Carolina; Bermúdez, Carlos; Fernandez, Natalia; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Algorithms
Scheduling
Hybrid evolutionary algorithms
scheduling problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22062
Ver los metadatos del registro completo
id |
SEDICI_7fae0338aabc2acd009c5ab2ee997351 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22062 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hybrid evolutionary algorithms to solve scheduling problemsMinetti, Gabriela F.Salto, CarolinaBermúdez, CarlosFernandez, NataliaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasARTIFICIAL INTELLIGENCEAlgorithmsSchedulingHybrid evolutionary algorithmsscheduling problemsThe choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf460-462http://sedici.unlp.edu.ar/handle/10915/22062enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:32Zoai:sedici.unlp.edu.ar:10915/22062Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:32.738SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hybrid evolutionary algorithms to solve scheduling problems |
title |
Hybrid evolutionary algorithms to solve scheduling problems |
spellingShingle |
Hybrid evolutionary algorithms to solve scheduling problems Minetti, Gabriela F. Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms Scheduling Hybrid evolutionary algorithms scheduling problems |
title_short |
Hybrid evolutionary algorithms to solve scheduling problems |
title_full |
Hybrid evolutionary algorithms to solve scheduling problems |
title_fullStr |
Hybrid evolutionary algorithms to solve scheduling problems |
title_full_unstemmed |
Hybrid evolutionary algorithms to solve scheduling problems |
title_sort |
Hybrid evolutionary algorithms to solve scheduling problems |
dc.creator.none.fl_str_mv |
Minetti, Gabriela F. Salto, Carolina Bermúdez, Carlos Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author |
Minetti, Gabriela F. |
author_facet |
Minetti, Gabriela F. Salto, Carolina Bermúdez, Carlos Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Salto, Carolina Bermúdez, Carlos Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms Scheduling Hybrid evolutionary algorithms scheduling problems |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Algorithms Scheduling Hybrid evolutionary algorithms scheduling problems |
dc.description.none.fl_txt_mv |
The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The choice of a search algorithm can play a vital role in the success of a scheduling application. Evolutionary algorithms (EAs) can be used to solve this kind of combinatorial optimization problems. Compared to conventional heuristics (CH) and local search techniques (LS), EAs are not well suited for fine-tuninf those structures, which are very close to optimal solutions. Therefore, in complex problems, it is essential to build hybrid evolutionary algorithms (HEA) by incorporating CH and/or LS to provide fine-tuning. EAs are good at global search but slow to converge, while local search is good for fine-tuning but often falls into local optima. The hybrid approach complements the properties of evolutionary algorithm and other techniques. This research guide attempts to develop EAs hybridized with local search and conventional heuristics. They are incorporated at different stages of the evolutionary process. Either when the initial population is created, or in intermediate stages, or in the final population, or within the evolutionary process itself. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22062 |
url |
http://sedici.unlp.edu.ar/handle/10915/22062 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 460-462 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063901314121728 |
score |
13.221938 |