Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem
- Autores
- Salto, Carolina; Stark, Natalia; Hugo, Alfonso; Gallard, Raúl Hector
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Evolutionary algorithms (EAs) have been successfully applied to scheduling problems. Current improvements towards convergence issues in EAs include incest prevention and multiplicity features. A multiplicity feature allows multiple recombination on multiple parents [7, 8, 9, 10]. The method was successfully applied to multimodal optimization problems. As a consequence of this approach it was detected that all individuals of the final population are much more centred on the optimum. This is an important issue when the application requires provision of multiple alternative near-optimal solutions confronting system dynamics as in production planning
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Incest prevention
multicore combinated evolutionary algorithms
job shop scheduling problem
Algorithms
Scheduling
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21663
Ver los metadatos del registro completo
id |
SEDICI_e1c48dcfc8df16f2f344e475d2b4e360 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21663 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problemSalto, CarolinaStark, NataliaHugo, AlfonsoGallard, Raúl HectorCiencias InformáticasIncest preventionmulticore combinated evolutionary algorithmsjob shop scheduling problemAlgorithmsSchedulingARTIFICIAL INTELLIGENCEEvolutionary algorithms (EAs) have been successfully applied to scheduling problems. Current improvements towards convergence issues in EAs include incest prevention and multiplicity features. A multiplicity feature allows multiple recombination on multiple parents [7, 8, 9, 10]. The method was successfully applied to multimodal optimization problems. As a consequence of this approach it was detected that all individuals of the final population are much more centred on the optimum. This is an important issue when the application requires provision of multiple alternative near-optimal solutions confronting system dynamics as in production planningEje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21663enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:32Zoai:sedici.unlp.edu.ar:10915/21663Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:33.203SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
title |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
spellingShingle |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem Salto, Carolina Ciencias Informáticas Incest prevention multicore combinated evolutionary algorithms job shop scheduling problem Algorithms Scheduling ARTIFICIAL INTELLIGENCE |
title_short |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
title_full |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
title_fullStr |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
title_full_unstemmed |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
title_sort |
Incest prevention and multicore combinated evolutionary algorithms for the job shop scheduling problem |
dc.creator.none.fl_str_mv |
Salto, Carolina Stark, Natalia Hugo, Alfonso Gallard, Raúl Hector |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Stark, Natalia Hugo, Alfonso Gallard, Raúl Hector |
author_role |
author |
author2 |
Stark, Natalia Hugo, Alfonso Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Incest prevention multicore combinated evolutionary algorithms job shop scheduling problem Algorithms Scheduling ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas Incest prevention multicore combinated evolutionary algorithms job shop scheduling problem Algorithms Scheduling ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
Evolutionary algorithms (EAs) have been successfully applied to scheduling problems. Current improvements towards convergence issues in EAs include incest prevention and multiplicity features. A multiplicity feature allows multiple recombination on multiple parents [7, 8, 9, 10]. The method was successfully applied to multimodal optimization problems. As a consequence of this approach it was detected that all individuals of the final population are much more centred on the optimum. This is an important issue when the application requires provision of multiple alternative near-optimal solutions confronting system dynamics as in production planning Eje: Inteligencia Computacional - Metaheurísticas Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Evolutionary algorithms (EAs) have been successfully applied to scheduling problems. Current improvements towards convergence issues in EAs include incest prevention and multiplicity features. A multiplicity feature allows multiple recombination on multiple parents [7, 8, 9, 10]. The method was successfully applied to multimodal optimization problems. As a consequence of this approach it was detected that all individuals of the final population are much more centred on the optimum. This is an important issue when the application requires provision of multiple alternative near-optimal solutions confronting system dynamics as in production planning |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21663 |
url |
http://sedici.unlp.edu.ar/handle/10915/21663 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260113293836288 |
score |
13.13397 |