Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden

Autores
Matuk Herrera, Rosana; Santos, Juan Miguel
Año de publicación
2001
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El aprendizaje de tareas en robots móviles, mediante aprendizaje por refuerzo, involucra la construcción de una política que permita al agente decidir qué acción tomar en cada situación censada. Construir esta política en problemas reales implica el manejo de grandes espacios de situaciones y acciones. Por lo tanto, es necesario recurrir a técnicas de clustering para tratar con estos espacios de una forma computacionalmente manejable. Si el agente no es capaz de clasificar adecuadamente las situaciones censadas, asignando a cada clase la acción correcta, el aprendizaje será perjudicado por el clusterting-aliasing, o por un clustering excesivamente refinado, con el cual desperdiciará recursos y perderá capacidad para generalizar. El grado de clusterización debe depender no sólo de la complejidad del ambiente, sino también la complejidad de la tarea a aprender. En el mismo ambiente, una tarea sencilla para ser aprendida con éxito, debería requerir menos distinciones de situaciones que una más compleja. Encontrar la cantidad justa de clusters que se necesita no es una tarea trivial [10]. En este trabajo se propone una métrica para medir el grado de cluster-aliasing, y un nuevo algoritmo para aproximar la cantidad justa de clusters disminuyendo el grado de cluster-aliasing. Presentaremos resultados experimentales en robots móviles Khepera que respaldan la performance del algoritmo propuesto.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Neural nets
Robotics
Learning
ARTIFICIAL INTELLIGENCE
Reinforcement learning
robot learning
neural networks
cluster-alisasing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23419

id SEDICI_cd7b5a491081d470c19365713331fe5f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23419
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Un método para tratar con el problema de Cluster-Aliasing en robots que aprendenMatuk Herrera, RosanaSantos, Juan MiguelCiencias InformáticasNeural netsRoboticsLearningARTIFICIAL INTELLIGENCEReinforcement learningrobot learningneural networkscluster-alisasingEl aprendizaje de tareas en robots móviles, mediante aprendizaje por refuerzo, involucra la construcción de una política que permita al agente decidir qué acción tomar en cada situación censada. Construir esta política en problemas reales implica el manejo de grandes espacios de situaciones y acciones. Por lo tanto, es necesario recurrir a técnicas de clustering para tratar con estos espacios de una forma computacionalmente manejable. Si el agente no es capaz de clasificar adecuadamente las situaciones censadas, asignando a cada clase la acción correcta, el aprendizaje será perjudicado por el clusterting-aliasing, o por un clustering excesivamente refinado, con el cual desperdiciará recursos y perderá capacidad para generalizar. El grado de clusterización debe depender no sólo de la complejidad del ambiente, sino también la complejidad de la tarea a aprender. En el mismo ambiente, una tarea sencilla para ser aprendida con éxito, debería requerir menos distinciones de situaciones que una más compleja. Encontrar la cantidad justa de clusters que se necesita no es una tarea trivial [10]. En este trabajo se propone una métrica para medir el grado de cluster-aliasing, y un nuevo algoritmo para aproximar la cantidad justa de clusters disminuyendo el grado de cluster-aliasing. Presentaremos resultados experimentales en robots móviles Khepera que respaldan la performance del algoritmo propuesto.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23419spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:26Zoai:sedici.unlp.edu.ar:10915/23419Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:26.756SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
title Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
spellingShingle Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
Matuk Herrera, Rosana
Ciencias Informáticas
Neural nets
Robotics
Learning
ARTIFICIAL INTELLIGENCE
Reinforcement learning
robot learning
neural networks
cluster-alisasing
title_short Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
title_full Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
title_fullStr Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
title_full_unstemmed Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
title_sort Un método para tratar con el problema de Cluster-Aliasing en robots que aprenden
dc.creator.none.fl_str_mv Matuk Herrera, Rosana
Santos, Juan Miguel
author Matuk Herrera, Rosana
author_facet Matuk Herrera, Rosana
Santos, Juan Miguel
author_role author
author2 Santos, Juan Miguel
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Neural nets
Robotics
Learning
ARTIFICIAL INTELLIGENCE
Reinforcement learning
robot learning
neural networks
cluster-alisasing
topic Ciencias Informáticas
Neural nets
Robotics
Learning
ARTIFICIAL INTELLIGENCE
Reinforcement learning
robot learning
neural networks
cluster-alisasing
dc.description.none.fl_txt_mv El aprendizaje de tareas en robots móviles, mediante aprendizaje por refuerzo, involucra la construcción de una política que permita al agente decidir qué acción tomar en cada situación censada. Construir esta política en problemas reales implica el manejo de grandes espacios de situaciones y acciones. Por lo tanto, es necesario recurrir a técnicas de clustering para tratar con estos espacios de una forma computacionalmente manejable. Si el agente no es capaz de clasificar adecuadamente las situaciones censadas, asignando a cada clase la acción correcta, el aprendizaje será perjudicado por el clusterting-aliasing, o por un clustering excesivamente refinado, con el cual desperdiciará recursos y perderá capacidad para generalizar. El grado de clusterización debe depender no sólo de la complejidad del ambiente, sino también la complejidad de la tarea a aprender. En el mismo ambiente, una tarea sencilla para ser aprendida con éxito, debería requerir menos distinciones de situaciones que una más compleja. Encontrar la cantidad justa de clusters que se necesita no es una tarea trivial [10]. En este trabajo se propone una métrica para medir el grado de cluster-aliasing, y un nuevo algoritmo para aproximar la cantidad justa de clusters disminuyendo el grado de cluster-aliasing. Presentaremos resultados experimentales en robots móviles Khepera que respaldan la performance del algoritmo propuesto.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description El aprendizaje de tareas en robots móviles, mediante aprendizaje por refuerzo, involucra la construcción de una política que permita al agente decidir qué acción tomar en cada situación censada. Construir esta política en problemas reales implica el manejo de grandes espacios de situaciones y acciones. Por lo tanto, es necesario recurrir a técnicas de clustering para tratar con estos espacios de una forma computacionalmente manejable. Si el agente no es capaz de clasificar adecuadamente las situaciones censadas, asignando a cada clase la acción correcta, el aprendizaje será perjudicado por el clusterting-aliasing, o por un clustering excesivamente refinado, con el cual desperdiciará recursos y perderá capacidad para generalizar. El grado de clusterización debe depender no sólo de la complejidad del ambiente, sino también la complejidad de la tarea a aprender. En el mismo ambiente, una tarea sencilla para ser aprendida con éxito, debería requerir menos distinciones de situaciones que una más compleja. Encontrar la cantidad justa de clusters que se necesita no es una tarea trivial [10]. En este trabajo se propone una métrica para medir el grado de cluster-aliasing, y un nuevo algoritmo para aproximar la cantidad justa de clusters disminuyendo el grado de cluster-aliasing. Presentaremos resultados experimentales en robots móviles Khepera que respaldan la performance del algoritmo propuesto.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23419
url http://sedici.unlp.edu.ar/handle/10915/23419
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615813301010432
score 13.069144