An experimental study on evolutionary reactive behaviors for mobile robots navigation

Autores
Fernández León, José A.; Tosini, Marcelo Alejandro; Acosta, Gerardo; Acosta, Nelson
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.
Facultad de Informática
Materia
Ciencias Informáticas
Robotics
Neural nets
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9591

id SEDICI_6ea169839325de0ca82f994c83a53633
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9591
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An experimental study on evolutionary reactive behaviors for mobile robots navigationFernández León, José A.Tosini, Marcelo AlejandroAcosta, GerardoAcosta, NelsonCiencias InformáticasRoboticsNeural netsMobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf183-188http://sedici.unlp.edu.ar/handle/10915/9591enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-4.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9591Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.045SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An experimental study on evolutionary reactive behaviors for mobile robots navigation
title An experimental study on evolutionary reactive behaviors for mobile robots navigation
spellingShingle An experimental study on evolutionary reactive behaviors for mobile robots navigation
Fernández León, José A.
Ciencias Informáticas
Robotics
Neural nets
title_short An experimental study on evolutionary reactive behaviors for mobile robots navigation
title_full An experimental study on evolutionary reactive behaviors for mobile robots navigation
title_fullStr An experimental study on evolutionary reactive behaviors for mobile robots navigation
title_full_unstemmed An experimental study on evolutionary reactive behaviors for mobile robots navigation
title_sort An experimental study on evolutionary reactive behaviors for mobile robots navigation
dc.creator.none.fl_str_mv Fernández León, José A.
Tosini, Marcelo Alejandro
Acosta, Gerardo
Acosta, Nelson
author Fernández León, José A.
author_facet Fernández León, José A.
Tosini, Marcelo Alejandro
Acosta, Gerardo
Acosta, Nelson
author_role author
author2 Tosini, Marcelo Alejandro
Acosta, Gerardo
Acosta, Nelson
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Robotics
Neural nets
topic Ciencias Informáticas
Robotics
Neural nets
dc.description.none.fl_txt_mv Mobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.
Facultad de Informática
description Mobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9591
url http://sedici.unlp.edu.ar/handle/10915/9591
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-4.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
183-188
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758357725184
score 13.069144