Learning and validation in neural network ensembles
- Autores
- Granitto, Pablo Miguel; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro; Navone, P. F.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Ensembles of artificial neural networks (ANN) have been used in the last years as classification/regression machines, showing improved generalization capabilities that outperform those of single networks. We propose here a simple method for learning and validation in regression/classification ensembles of ANN that leads to overtrained aggregate members with an adequate balance between accuracy and diversity. The algorithm is favorably tested against other methods recently proposed in the literature, producing an improvement in performance on the standard statistical databases used as benchmarks.
Eje: Inteligencia Computacional - Metaheurísticas
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Learning and validation
ARTIFICIAL INTELLIGENCE
neural network ensembles
Learning
Validation
Neural nets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21665
Ver los metadatos del registro completo
id |
SEDICI_2f30fcbcc530278070c169a95b702b82 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21665 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Learning and validation in neural network ensemblesGranitto, Pablo MiguelVerdes, Pablo FabiánCeccatto, Hermenegildo AlejandroNavone, P. F.Ciencias InformáticasLearning and validationARTIFICIAL INTELLIGENCEneural network ensemblesLearningValidationNeural netsEnsembles of artificial neural networks (ANN) have been used in the last years as classification/regression machines, showing improved generalization capabilities that outperform those of single networks. We propose here a simple method for learning and validation in regression/classification ensembles of ANN that leads to overtrained aggregate members with an adequate balance between accuracy and diversity. The algorithm is favorably tested against other methods recently proposed in the literature, producing an improvement in performance on the standard statistical databases used as benchmarks.Eje: Inteligencia Computacional - MetaheurísticasRed de Universidades con Carreras en Informática (RedUNCI)2001-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21665enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:32Zoai:sedici.unlp.edu.ar:10915/21665Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:33.209SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Learning and validation in neural network ensembles |
title |
Learning and validation in neural network ensembles |
spellingShingle |
Learning and validation in neural network ensembles Granitto, Pablo Miguel Ciencias Informáticas Learning and validation ARTIFICIAL INTELLIGENCE neural network ensembles Learning Validation Neural nets |
title_short |
Learning and validation in neural network ensembles |
title_full |
Learning and validation in neural network ensembles |
title_fullStr |
Learning and validation in neural network ensembles |
title_full_unstemmed |
Learning and validation in neural network ensembles |
title_sort |
Learning and validation in neural network ensembles |
dc.creator.none.fl_str_mv |
Granitto, Pablo Miguel Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro Navone, P. F. |
author |
Granitto, Pablo Miguel |
author_facet |
Granitto, Pablo Miguel Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro Navone, P. F. |
author_role |
author |
author2 |
Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro Navone, P. F. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Learning and validation ARTIFICIAL INTELLIGENCE neural network ensembles Learning Validation Neural nets |
topic |
Ciencias Informáticas Learning and validation ARTIFICIAL INTELLIGENCE neural network ensembles Learning Validation Neural nets |
dc.description.none.fl_txt_mv |
Ensembles of artificial neural networks (ANN) have been used in the last years as classification/regression machines, showing improved generalization capabilities that outperform those of single networks. We propose here a simple method for learning and validation in regression/classification ensembles of ANN that leads to overtrained aggregate members with an adequate balance between accuracy and diversity. The algorithm is favorably tested against other methods recently proposed in the literature, producing an improvement in performance on the standard statistical databases used as benchmarks. Eje: Inteligencia Computacional - Metaheurísticas Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Ensembles of artificial neural networks (ANN) have been used in the last years as classification/regression machines, showing improved generalization capabilities that outperform those of single networks. We propose here a simple method for learning and validation in regression/classification ensembles of ANN that leads to overtrained aggregate members with an adequate balance between accuracy and diversity. The algorithm is favorably tested against other methods recently proposed in the literature, producing an improvement in performance on the standard statistical databases used as benchmarks. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21665 |
url |
http://sedici.unlp.edu.ar/handle/10915/21665 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260113295933440 |
score |
13.13397 |