Contribution to the study and the design of reinforcement functions
- Autores
- Santos, Juan Miguel
- Año de publicación
- 2000
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Reinforcement Learning
Artificial Neural Networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135464
Ver los metadatos del registro completo
id |
SEDICI_a0d17f3224260bc6f18f8dc7be329276 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135464 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Contribution to the study and the design of reinforcement functionsSantos, Juan MiguelCiencias InformáticasReinforcement LearningArtificial Neural NetworksThe underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward.Sociedad Argentina de Informática e Investigación Operativa2000-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/135464spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/127info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:25:51Zoai:sedici.unlp.edu.ar:10915/135464Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:25:51.742SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Contribution to the study and the design of reinforcement functions |
title |
Contribution to the study and the design of reinforcement functions |
spellingShingle |
Contribution to the study and the design of reinforcement functions Santos, Juan Miguel Ciencias Informáticas Reinforcement Learning Artificial Neural Networks |
title_short |
Contribution to the study and the design of reinforcement functions |
title_full |
Contribution to the study and the design of reinforcement functions |
title_fullStr |
Contribution to the study and the design of reinforcement functions |
title_full_unstemmed |
Contribution to the study and the design of reinforcement functions |
title_sort |
Contribution to the study and the design of reinforcement functions |
dc.creator.none.fl_str_mv |
Santos, Juan Miguel |
author |
Santos, Juan Miguel |
author_facet |
Santos, Juan Miguel |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Reinforcement Learning Artificial Neural Networks |
topic |
Ciencias Informáticas Reinforcement Learning Artificial Neural Networks |
dc.description.none.fl_txt_mv |
The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward. Sociedad Argentina de Informática e Investigación Operativa |
description |
The underlying concept in Reinforcement Learning is as simple as it is attractive: to learn by trial and error from the interaction with the environment. This approach allows us to deal with problems where a learning technique searches to improve the performance of the agent (the learner) over time. Reinforcement Learning groups a set of such techniques, and it uses a performance measure based on two types of signals given by a Critic or Reinforcement Function: penalty and reward. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-06-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135464 |
url |
http://sedici.unlp.edu.ar/handle/10915/135464 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/127 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064309685190656 |
score |
12.891075 |