Learning obstacle avoidance with an operant behavioral model
- Autores
- Gutnisky, D. A.; Zanutto, Bonifacio Silvano
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed.
Fil: Gutnisky, D. A.. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina - Materia
-
OPERANT LEARNING
NEURAL NETWORKS
REINFORCEMENT LEARNING
ARTIFICIAL NEURAL NETWORKS
BIOINGENIERIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29109
Ver los metadatos del registro completo
id |
CONICETDig_c649f89ddc570487d4896889df139415 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29109 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning obstacle avoidance with an operant behavioral modelGutnisky, D. A.Zanutto, Bonifacio SilvanoOPERANT LEARNINGNEURAL NETWORKSREINFORCEMENT LEARNINGARTIFICIAL NEURAL NETWORKSBIOINGENIERIAhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed.Fil: Gutnisky, D. A.. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; ArgentinaFil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; ArgentinaMassachusetts Institute of Technology2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29109Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Learning obstacle avoidance with an operant behavioral model; Massachusetts Institute of Technology; Artificial Life; 10; 1; -1-2004; 65-811064-54621530-9185CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mitpressjournals.org/doi/abs/10.1162/106454604322875913info:eu-repo/semantics/altIdentifier/doi/10.1162/106454604322875913info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/citation.cfm?id=982224info:eu-repo/semantics/altIdentifier/url/15035863info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:56Zoai:ri.conicet.gov.ar:11336/29109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:56.79CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning obstacle avoidance with an operant behavioral model |
title |
Learning obstacle avoidance with an operant behavioral model |
spellingShingle |
Learning obstacle avoidance with an operant behavioral model Gutnisky, D. A. OPERANT LEARNING NEURAL NETWORKS REINFORCEMENT LEARNING ARTIFICIAL NEURAL NETWORKS BIOINGENIERIA |
title_short |
Learning obstacle avoidance with an operant behavioral model |
title_full |
Learning obstacle avoidance with an operant behavioral model |
title_fullStr |
Learning obstacle avoidance with an operant behavioral model |
title_full_unstemmed |
Learning obstacle avoidance with an operant behavioral model |
title_sort |
Learning obstacle avoidance with an operant behavioral model |
dc.creator.none.fl_str_mv |
Gutnisky, D. A. Zanutto, Bonifacio Silvano |
author |
Gutnisky, D. A. |
author_facet |
Gutnisky, D. A. Zanutto, Bonifacio Silvano |
author_role |
author |
author2 |
Zanutto, Bonifacio Silvano |
author2_role |
author |
dc.subject.none.fl_str_mv |
OPERANT LEARNING NEURAL NETWORKS REINFORCEMENT LEARNING ARTIFICIAL NEURAL NETWORKS BIOINGENIERIA |
topic |
OPERANT LEARNING NEURAL NETWORKS REINFORCEMENT LEARNING ARTIFICIAL NEURAL NETWORKS BIOINGENIERIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed. Fil: Gutnisky, D. A.. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería.Instituto de Ingeniería Biomédica; Argentina |
description |
Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29109 Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Learning obstacle avoidance with an operant behavioral model; Massachusetts Institute of Technology; Artificial Life; 10; 1; -1-2004; 65-81 1064-5462 1530-9185 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29109 |
identifier_str_mv |
Gutnisky, D. A.; Zanutto, Bonifacio Silvano; Learning obstacle avoidance with an operant behavioral model; Massachusetts Institute of Technology; Artificial Life; 10; 1; -1-2004; 65-81 1064-5462 1530-9185 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mitpressjournals.org/doi/abs/10.1162/106454604322875913 info:eu-repo/semantics/altIdentifier/doi/10.1162/106454604322875913 info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/citation.cfm?id=982224 info:eu-repo/semantics/altIdentifier/url/15035863 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Massachusetts Institute of Technology |
publisher.none.fl_str_mv |
Massachusetts Institute of Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613944480628736 |
score |
13.070432 |