Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones
- Autores
- Ahumada, Hernán César; Bayá, Ariel E.; Grinblat, Guillermo L.; Izetta Riera, C. Javier
- Año de publicación
- 2011
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El campo del Aprendizaje Automatizado (Machine Learning) es parte central de la nueva revolución tecnológica basada en el uso inteligente de la información. Por tradición, los principales problemas que se investigan en esta área son los de reconocimiento de patrones o Clasificación, aproximación de funciones de variable continua o Regresión, y búsqueda de estructuras ocultas en datos o Clustering. Lógicamente, el desarrollo de nuevos métodos y algoritmos se concentró en un principio en los problemas más simples o típicos de encontrar, por ejemplo en problemas estacionarios en el tiempo, con una abundante cantidad de ejemplos de los cuales aprender y con sólo unas pocas clases bastante balanceadas entre sí. Sin embargo, los nuevos tipos de datos provenientes de la genómica, la proteómica, los equipos de monitoreo continuo de sistemas críticos, etc., han introducido nuevos desafíos en el Aprendizaje Automatizado. Este proyecto propone el desarrollo de nuevos métodos (o la extensión de los métodos actuales cuando sea apropiado) para poder modelar eficientemente esta nueva clase de datos, incluyendo problemas de regresión y clasificación no estacionarios y/o con gran nivel de ruido, problemas de clasificación y clustering con un número extremadamente alto de variables de entrada, o problemas de clasificación con un importante desbalance entre clases. En todas las líneas del proyecto se incluyen aplicaciones a problemas actuales de gran interés tecnológico, como la biotecnología y la agrotecnología
Eje: Agentes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Intelligent agents
machine learning
Applications
clasificación
regresión
clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/19971
Ver los metadatos del registro completo
id |
SEDICI_c4e7f83a80f0cceebaf22e20bdea5bea |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/19971 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicacionesAhumada, Hernán CésarBayá, Ariel E.Grinblat, Guillermo L.Izetta Riera, C. JavierCiencias InformáticasIntelligent agentsmachine learningApplicationsclasificaciónregresiónclusteringEl campo del Aprendizaje Automatizado (Machine Learning) es parte central de la nueva revolución tecnológica basada en el uso inteligente de la información. Por tradición, los principales problemas que se investigan en esta área son los de reconocimiento de patrones o Clasificación, aproximación de funciones de variable continua o Regresión, y búsqueda de estructuras ocultas en datos o Clustering. Lógicamente, el desarrollo de nuevos métodos y algoritmos se concentró en un principio en los problemas más simples o típicos de encontrar, por ejemplo en problemas estacionarios en el tiempo, con una abundante cantidad de ejemplos de los cuales aprender y con sólo unas pocas clases bastante balanceadas entre sí. Sin embargo, los nuevos tipos de datos provenientes de la genómica, la proteómica, los equipos de monitoreo continuo de sistemas críticos, etc., han introducido nuevos desafíos en el Aprendizaje Automatizado. Este proyecto propone el desarrollo de nuevos métodos (o la extensión de los métodos actuales cuando sea apropiado) para poder modelar eficientemente esta nueva clase de datos, incluyendo problemas de regresión y clasificación no estacionarios y/o con gran nivel de ruido, problemas de clasificación y clustering con un número extremadamente alto de variables de entrada, o problemas de clasificación con un importante desbalance entre clases. En todas las líneas del proyecto se incluyen aplicaciones a problemas actuales de gran interés tecnológico, como la biotecnología y la agrotecnologíaEje: Agentes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2011-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf90-93http://sedici.unlp.edu.ar/handle/10915/19971spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-673-892-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:05Zoai:sedici.unlp.edu.ar:10915/19971Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:06.027SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
title |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
spellingShingle |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones Ahumada, Hernán César Ciencias Informáticas Intelligent agents machine learning Applications clasificación regresión clustering |
title_short |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
title_full |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
title_fullStr |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
title_full_unstemmed |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
title_sort |
Extensión de métodos modernos de Aprendizaje Automatizado y aplicaciones |
dc.creator.none.fl_str_mv |
Ahumada, Hernán César Bayá, Ariel E. Grinblat, Guillermo L. Izetta Riera, C. Javier |
author |
Ahumada, Hernán César |
author_facet |
Ahumada, Hernán César Bayá, Ariel E. Grinblat, Guillermo L. Izetta Riera, C. Javier |
author_role |
author |
author2 |
Bayá, Ariel E. Grinblat, Guillermo L. Izetta Riera, C. Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Intelligent agents machine learning Applications clasificación regresión clustering |
topic |
Ciencias Informáticas Intelligent agents machine learning Applications clasificación regresión clustering |
dc.description.none.fl_txt_mv |
El campo del Aprendizaje Automatizado (Machine Learning) es parte central de la nueva revolución tecnológica basada en el uso inteligente de la información. Por tradición, los principales problemas que se investigan en esta área son los de reconocimiento de patrones o Clasificación, aproximación de funciones de variable continua o Regresión, y búsqueda de estructuras ocultas en datos o Clustering. Lógicamente, el desarrollo de nuevos métodos y algoritmos se concentró en un principio en los problemas más simples o típicos de encontrar, por ejemplo en problemas estacionarios en el tiempo, con una abundante cantidad de ejemplos de los cuales aprender y con sólo unas pocas clases bastante balanceadas entre sí. Sin embargo, los nuevos tipos de datos provenientes de la genómica, la proteómica, los equipos de monitoreo continuo de sistemas críticos, etc., han introducido nuevos desafíos en el Aprendizaje Automatizado. Este proyecto propone el desarrollo de nuevos métodos (o la extensión de los métodos actuales cuando sea apropiado) para poder modelar eficientemente esta nueva clase de datos, incluyendo problemas de regresión y clasificación no estacionarios y/o con gran nivel de ruido, problemas de clasificación y clustering con un número extremadamente alto de variables de entrada, o problemas de clasificación con un importante desbalance entre clases. En todas las líneas del proyecto se incluyen aplicaciones a problemas actuales de gran interés tecnológico, como la biotecnología y la agrotecnología Eje: Agentes y sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
El campo del Aprendizaje Automatizado (Machine Learning) es parte central de la nueva revolución tecnológica basada en el uso inteligente de la información. Por tradición, los principales problemas que se investigan en esta área son los de reconocimiento de patrones o Clasificación, aproximación de funciones de variable continua o Regresión, y búsqueda de estructuras ocultas en datos o Clustering. Lógicamente, el desarrollo de nuevos métodos y algoritmos se concentró en un principio en los problemas más simples o típicos de encontrar, por ejemplo en problemas estacionarios en el tiempo, con una abundante cantidad de ejemplos de los cuales aprender y con sólo unas pocas clases bastante balanceadas entre sí. Sin embargo, los nuevos tipos de datos provenientes de la genómica, la proteómica, los equipos de monitoreo continuo de sistemas críticos, etc., han introducido nuevos desafíos en el Aprendizaje Automatizado. Este proyecto propone el desarrollo de nuevos métodos (o la extensión de los métodos actuales cuando sea apropiado) para poder modelar eficientemente esta nueva clase de datos, incluyendo problemas de regresión y clasificación no estacionarios y/o con gran nivel de ruido, problemas de clasificación y clustering con un número extremadamente alto de variables de entrada, o problemas de clasificación con un importante desbalance entre clases. En todas las líneas del proyecto se incluyen aplicaciones a problemas actuales de gran interés tecnológico, como la biotecnología y la agrotecnología |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/19971 |
url |
http://sedici.unlp.edu.ar/handle/10915/19971 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-673-892-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 90-93 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615797727559680 |
score |
13.070432 |